Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.9

Tamilnadu State Board New Syllabus Samacheer Kalvi 11th Maths Guide Pdf Chapter 11 Integral Calculus Ex 11.9 Text Book Back Questions and Answers, Notes.

Tamilnadu Samacheer Kalvi 11th Maths Solutions Chapter 11 Integral Calculus Ex 11.9

Integrate the following with respect to x:

Question 1.
ex (tan x + log sec x)
Answer:
Let I = ∫ex (tan x + log sec x) dx
Take f(x) = log sec x
f'(x) = \(\frac{1}{\sec x}\) sec x tan x
f'(x) = tan x
[∫ex [f (x) + f (x)] dx = ex f(x) + c]
∴ I = ex log |sec x| + c

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.9

Question 2.
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.9 1
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.9 2
[∫ ex [f (x) + f (x)] dx = ex f(x) + c]
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.9 3

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.9

Question 3.
ex sec x (1 + tan x)
Answer:
Let I = \(\mathrm{I}=\int e^{x}(\sec x+\sec x \tan x) d x\)
Take f(x) = sec x
f ‘ (x) = sec x tan x
This is of the form of \(\int e^{x}\left[f(x)+f^{\prime}(x)\right] d x\) = ex f(x) + c
= ex sec x + c

Question 4.
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.9 4
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.9 5
Take f(x) = tan x
f'(x) = sec2 x
[∫ ex [f (x) + f (x)] dx = ex f(x) + c]
I = ex tan x + c

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.9

Question 5.
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.9 6
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.9 7
Put tan-1 x = t
\(\frac{1}{1+x^{2}}\)dx = dt
x = tan t
∴ I = ∫et [1 + tan t + tan2t] dt
= ∫et [1 + tan2 t + tan t] dt
= ∫et [sec2t + tan t] dt
= ∫et [tan t + sec2t] dt
f(x) = tan t
f'(x) = sec2t
[∫ ex [f (x) + f (x)] dx = ex f(x) + c]
∴ I = et tan t + c
I = etan-1(x) . x + c
I = x etan-1(x) + c

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.9

Question 6.
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.9 8
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.9 9

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.8

Tamilnadu State Board New Syllabus Samacheer Kalvi 11th Maths Guide Pdf Chapter 11 Integral Calculus Ex 11.8 Text Book Back Questions and Answers, Notes.

Tamilnadu Samacheer Kalvi 11th Maths Solutions Chapter 11 Integral Calculus Ex 11.8

Integrate the following with respect to x:

Question 1.
(i) eax cos bx
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.8 1

(ii) e2x sin x
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.8 2

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.8

(iii) e-x cos 2x
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.8 3

Question 2.
(i) e-3x sin 2x
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.8 4
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.8 5

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.8

(ii) e-4x sin 2x
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.8 6

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.8

(iii) e-3x cos x
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.8 7

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7

Tamilnadu State Board New Syllabus Samacheer Kalvi 11th Maths Guide Pdf Chapter 11 Integral Calculus Ex 11.7 Text Book Back Questions and Answers, Notes.

Tamilnadu Samacheer Kalvi 11th Maths Solutions Chapter 11 Integral Calculus Ex 11.7

Integrate the following with respect to x:

Question 1.
(i) 9x e3x
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7 1
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7 2

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7

(ii) x sin 3x
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7 3

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7

(iii) 25 x e-5x
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7 4
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7 5

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7

(iv) x sec x tan x
Answer:
∫ x sec x tan x dx
u = x, u’ = 1 , u” = 0
dv = sec x tan x dx , v = ∫ sec x tan x dx = sec x
v1 = ∫ v dx = ∫ sec x dx = log |sec x + tan x|
v2 = ∫ v1 dx = ∫ log |sec x + tan x| dx
∫ u dv = uv – u’ v1 + u” v2 – u”’ v3 + ………….
∫x sec x tan x dx = x sec x – 1 × log |sec x + tan x| + 0 × ∫ log |x sec x tan x| + c
∫x sec x tan x dx = x sec x – log |sec x + tan x| + c

Question 2.
(i) x log x
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7 6
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7 7

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7 8

(ii) 27 x2 e3x
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7 9

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7

(iii) x2 cos x
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7 10

(iv) x3 sin x
Answer:
∫ x3 sin x
u = x3, u’ = 3x2, u” = 6x , u”’ = 6 , u’v = 0
dv = sin x dx ⇒ v = ∫ sin x dx = – cosx
v1 = ∫v dx = ∫- cos x dx = – ∫ cos x dx = – sin x
v2 = ∫ v1 dx = ∫ – sin x dx = – ∫ sin x dx = – (- cos x) = cos x
v3 = ∫ v2 dx = ∫ cos x dx = sin x
v4 = ∫ v3 dx = ∫ sin x dx = – cos x
∫ u dv = uv – u’ v1 + u” v2 – u”’ v3 + u’vv4 – ………..
∫x3 sin x dx = x3 (- cos x) – 3x2 (- sin x) + 6x (cos x) – 6 sin x + 0 (- cos x) + c
= -x3 cos x + 3x2 sin x + 6x cos x – 6 sin x + c

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7

Question 3.
(i) Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7 11
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7 12
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7 13

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7

(ii) x5 ex2
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7 14
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7 15

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7

(iii) Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7 16
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7 17
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7 18

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7

(iv) Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7 19
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.7 20

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5

Tamilnadu State Board New Syllabus Samacheer Kalvi 11th Maths Guide Pdf Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 Text Book Back Questions and Answers, Notes.

Tamilnadu Samacheer Kalvi 11th Maths Solutions Chapter 10 Differentiability and Methods of Differentiation Ex 10.5

Choose the correct or the most suitable answer from the given four alternatives.

Question 1.
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 1
(1) \(\frac{\pi}{180}\) cos x°
(2) \(\frac{1}{90}\) cos x°
(3) \(\frac{\pi}{90}\) cos x°
(4) \(\frac{2}{\pi}\) cos x°
Answer:
(2) \(\frac{1}{90}\) cos x°

Explaination:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 2

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5

Question 2.
If y = f(x2 + 2) and f'(3) = 5 , then \(\frac{\mathrm{dy}}{\mathrm{d} x}\) at x = 1 is
(1) 5
(2) 25
(3) 15
(4) 10
Answer:
(4) 10

Explaination:
y = f(x2 + 2)
\(\frac{\mathrm{dy}}{\mathrm{d} x}\) = f’ (x2 + 2) × 2x
\(\frac{\mathrm{dy}}{\mathrm{d} x} / x=1\) = f’ (12 + 2) × 2 × 1
= f’(3) × 2
= 5 × 2 = 10

Question 3.
If y = \(\frac{1}{4}\)u4, u = \(\frac{2}{3}\) x3 + 5, then \(\frac{\mathrm{dy}}{\mathrm{d} x}\) is
(1) \(\frac{1}{27}\) x2 (2x3 + 15)3
(2) \(\frac{2}{27}=\) x (2x3 + 5)3
(3) \(\frac{2}{27}=\) x2 (2x3 + 15)3
(4) – \(\frac{2}{27}=\) x (2x3 + 5)3
Answer:
(3) \(\frac{2}{27}=\) x2 (2x3 + 15)3

Explaination:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 3
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 4

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5

Question 4.
If f(x) = x2 – 3x, then the points at which f (x) = f’ (x) are
(1) both positive integers
(2) both negative integers
(3) both irrational
(4) one rational and another irrational
Answer:
(3) both irrational

Explaination:
f(x) = x2 – 3x
f’(x) = 2x – 3
f(x) = f'(x)
⇒ x2 – 3x = 2x – 3
x2 – 3x – 2x + 3 = 0
x2 – 5x + 3 = 0
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 5
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 6
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 7

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5

Question 5.
If y = \(\frac{1}{a-z}\), then \(\frac{\mathrm{d} \mathrm{z}}{\mathrm{d} \mathrm{y}}\) is
(1) (a – z)2
(2) – (z – a)2
(3) (z + a)2
(4) – (z + a)2
Answer:
(1) (a – z)2

Explaination:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 8

Question 6.
If y = cos (sin x2), then \(\frac{\mathrm{dy}}{\mathrm{d} x}\) at x = \(\sqrt{\frac{\pi}{2}}\) is
(1) – 2
(2) 2
(3) – 2 \(\sqrt{\frac{\pi}{2}}\)
(4) 0
Answer:
(4) 0

Explaination:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 9

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5

Question 7.
If y = mx + c and f(0) = f’(0) = 1, then f(2) is
(1) 1
(2) 2
(3) 3
(4) – 3
Answer:
(3) 3

Explaination:
y = mx+c
\(\frac{d y}{d x}\) = m
y = x + c (i.e.) f(x) = x + c
y(a tx = 0) = f(0) 0 + c = 1 ⇒ c = 1
y = x + 1 ⇒ f(x) = x + 1
f(2) = 2 + 1 = 3

Question 8.
If f(x) = x tan-1 x then f'(x) is
(1) \(1+\frac{\pi}{4}\)
(2) \(\frac{1}{2}+\frac{\pi}{4}\)
(3) \(\frac{1}{2}-\frac{\pi}{4}\)
(4) 2
Answer:
(2) \(\frac{1}{2}+\frac{\pi}{4}\)

Explaination:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 10

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5

Question 9.
\(\frac{d}{d x}\) (ex + 5 log x) is
(1) ex . x4 (x + 5)
(2) ex . x (x + 5)
(3) ex + \(\frac{5}{x}\)
(4) ex – \(\frac{5}{x}\)
Answer:
(1) ex . x4 (x + 5)

Explaination:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 11
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 12

Question 10.
If the derivative of (ax – 5)e at x = 0 is – 13 , then the value of a ¡s
(1) 8
(2) – 2
(3) 5
(4) 2
Answer:
(4) 2

Explaination:
y = (ax – 5)e3x
\(\frac{d y}{d x}\) = y’ = (ax – 5) (3e3x) + e3x (a)
= e3x[3ax – 15 + a]
Given \(\frac{d y}{d x}\) = -13 at x = 0
⇒ [-15 + a] = -13
⇒ a = -13 + 15
a = 2

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5

Question 11.
x = \(\frac{1-t^{2}}{1+t^{2}}\), y = \(\frac{2 t}{1+t^{2}}\) then \(\frac{d y}{d x}\) is
(1) – \(\frac{\mathbf{y}}{x}\)
(2) \(\frac{\mathbf{y}}{x}\)
(3) – \(\frac{x}{y}\)
(4) \(\frac{x}{y}\)
Answer:
(3) – \(\frac{x}{y}\)

Explaination:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 13
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 14

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5

Question 12.
If x = a sin θ and y = b cos θ, then \(\) is
(1) \(\frac{\mathbf{a}}{\mathbf{b}^{2}}\) sec2 θ
(2) \(-\frac{\mathbf{b}}{\mathbf{a}}\) sec2 θ
(3) \(-\frac{b}{a^{2}}\) sec3 θ
(4) \(-\frac{b^{2}}{a^{2}}\) sec3 θ
Answer:
(3) \(-\frac{b}{a^{2}}\) sec3 θ

Explaination:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 15

Question 13.
The differential coefficient of log10 x with respect to log10 x is
(1) 1
(2) – (log10 x)2
(3) (log10 x)2
(4) \(\frac{x^{2}}{100}\)
Answer:
(2) – (log10 x)2

Explaination:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 16
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 17

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5

Question 14.
If f(x) = x + 2 , then f’ (f(x)) at x= 4 is
(1) 8
(2) 1
(3) 4
(4) 5
Answer:
(2) 1

Explaination:
f(x) x + 2
f’ (f(x)) = \(\frac{\mathrm{d}}{\mathrm{d} x}\) (f(x))
= \(\frac{\mathrm{d}}{\mathrm{d} x}\) (x + 2) = 1

Question 15.
If y = \(\frac{(1-x)^{2}}{x^{2}}\), then \(\frac{\mathrm{dy}}{\mathrm{d} x}\) is
(1) \(\frac{2}{x^{2}}+\frac{2}{x^{3}}\)
(2) \(-\frac{2}{x^{2}}+\frac{2}{x^{3}}\)
(3) \(-\frac{2}{x^{2}}-\frac{2}{x^{3}}\)
(4) \(-\frac{2}{x^{3}}+\frac{2}{x^{2}}\)
Answer:
(4) y = \(\frac{(1-x)^{2}}{x^{2}}\)

Explaination:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 18

Question 16.
If pv = 81, then \(\frac{\mathbf{d} \mathbf{p}}{\mathbf{d v}}\) at v = 9 is
(1) 1
(2) – 1
(3) 2
(4) – 3
Answer:
(2) – 1

Explaination:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 19

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5

Question 17.
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 20
(1) 0
(2) 2
(3) 3
(4) 4
Answer:
(3) 3

Explaination:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 21

Question 18.
It is given that f’ (a) exists, then
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 22
(1) f(a) – af'(a)
(2) f'(a)
(3) – f'(a)
(4) f(a) + af'(a)
Answer:
(1) f(a) – af'(a)

Explaination:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 23
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 24

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5

Question 19.
If f(x) = Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 25 then f’ (2) is
(1) 0
(2) 1
(3) 2
(4) does not exist
Answer:
(3) 2

Explaination:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 26
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 27

Question 20.
If g(x) = (x2 + 2x + 3) f(x) and f(0) – 5 and Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 28 then g'(0) is
(1) 20
(2) 14
(3) 18
(4) 12
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 29

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5

Question 21.
If f(x) = Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 30 then at x = 3, f'(x) is
(1) 1
(2) – 1
(3) 0
(4) does not exist
Answer:
(2) – 1

Explaination:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 31
From equations (1) and (2) we get
f’ (3) ≠ f’ (3+)
∴ limit of f(x) does not exist at x = 3
f’ (x) does not exist at x = 3

Question 22.
The derivative of f(x)= x|x| at x = – 3 is
(1) 6
(2) – 6
(3) does not exist
(4) 0
Answer:
(1) 6

Explaination:
f(x) = x|x|
f(x) = x(-x) ⇒ f(x) = – x2
f ‘(x) = -(2x)
f ‘(-3) = -(2) (-3) = 6

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5

Question 23.
If f(x) = Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 32 then which one of the following is true?
(1) f(x) is not differentiable at x = a
(2) f(x) is discontinuous at x = a
(3) f(x) is continuous for all x in R
(4) f(x) is differentiable for all x ≥ a
Answer:
(1) f(x) is not differentiable at x = a

Explaination:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 33
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 34
f’ (a+) = 3 ………. (2)
From equations (1) and (2) we get
f'(a) ≠ f'(a+)
∴ f’ (x) does not exist at x = a
∴ f(x) is not differentiable at x = a

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5

Question 24.
If f(x) = Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 35 is differentiable at x = 1, then
(1) a = \(\frac{1}{2}\), b = \(\frac{-3}{2}\)
(2) a = \(\frac{-1}{2}\), b = \(\frac{3}{2}\)
(3) a = \(-\frac{1}{2}\), b = \(-\frac{3}{2}\)
(4) a = \(\frac{1}{2}\), b = \(\frac{3}{2}\)
Answer:
(3) a = \(-\frac{1}{2}\), b = \(-\frac{3}{2}\)

Explaination:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 36
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 37
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5 38

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.5

Question 25.
The number of points in R in which the function f(x) = |x – 1| + |x – 3| + sin x is not differentiable, is
(1) 3
(2) 2
(3) 1
(4) 4
Answer:
(2) 2

Explaination:
f(x) = |x – 1| + |x – 3| + sin x is not differentiable at x = 1, and x = 3

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.1

Tamilnadu State Board New Syllabus Samacheer Kalvi 11th Maths Guide Pdf Chapter 11 Integral Calculus Ex 11.1 Text Book Back Questions and Answers, Notes.

Tamilnadu Samacheer Kalvi 11th Maths Solutions Chapter 11 Integral Calculus Ex 11.1

Integrate the following with respect to x:

Question 1.
(i) x11
(ii) \(\frac{1}{x^{7}}\)
(iii) \(\sqrt[3]{x^{4}}\)
(iv) (x5)1/8
Answer:
(i) x11
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.1 1

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.1

(ii) \(\frac{1}{x^{7}}\)
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.1 2

(iii) \(\sqrt[3]{x^{4}}\)
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.1 3

(iv) (x5)1/8
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.1 4

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.1

Question 2.
(i) \(\frac{1}{\sin ^{2} x}\)
(ii) \(\frac{\tan x}{\cos x}\)
(iii) \(\frac{\cos x}{\sin ^{2} x}\)
(iv) \(\frac{1}{\cos ^{2} x}\)
Answer:
(i) \(\frac{1}{\sin ^{2} x}\)
\(\frac{1}{\sin ^{2} x}\) = ∫cosec2 x dx
= – cot x + c

(ii) \(\frac{\tan x}{\cos x}\)
\(\frac{\tan x}{\cos x}\) = ∫sec x tan x dx
= sec x + c

(iii) \(\frac{\cos x}{\sin ^{2} x}\)
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.1 5

(iv) \(\frac{1}{\cos ^{2} x}\)
\(\frac{1}{\cos ^{2} x}\) = ∫sec2 x dx
= tan x + c

Question 3.
(i) 123
(ii) \(\frac{x^{24}}{x^{25}}\)
(iii) ex
Answer:
(i) 123
∫123 dx = 123 ∫dx = 123x + c

(ii) \(\frac{x^{24}}{x^{25}}\)
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.1 6

(iii) ex
∫ex dx = ex + c

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.1

Question 4.
(i) (1 + x2)-1
(ii) (1 – x2)-1/2
Answer:
(i) (1 + x2)-1
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.1 7

(ii) (1 – x2)-1/2
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.1 8

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.2

Tamilnadu State Board New Syllabus Samacheer Kalvi 11th Maths Guide Pdf Chapter 11 Integral Calculus Ex 11.2 Text Book Back Questions and Answers, Notes.

Tamilnadu Samacheer Kalvi 11th Maths Solutions Chapter 11 Integral Calculus Ex 11.2

Integrate the following functions with respect to x

Question 1.
(i) (x + 5)6
(ii) \(\frac{1}{(2-3 x)^{4}}\)
(iii) \(\sqrt{3 x+2}\)
Answer:
(i) (x + 5)6
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.2 1

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.2

(ii) \(\frac{1}{(2-3 x)^{4}}\)
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.2 2

(iii) \(\sqrt{3 x+2}\)
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.2 3

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.2

Question 2.
(i) sin 3x
(ii) cos (5 – 11x)
(iii) cosec2 (5x – 7)
Answer:
(i) sin 3x
∫sin (ax + b) dx = – \(\frac{1}{a}\) cos (ax + b) + c
∫sin 3x dx = – \(\frac{1}{3}\) cos 3x + c

(ii) cos (5 – 11x)
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.2 4

(iii) cosec2 (5x – 7)
[∫cosec2 (ax + b) dx = – \(\frac{1}{a}\) cot (ax + b) + c]
∫cosec2 (5x – 7) dx = – \(\frac{1}{5}\) cot (5x – 7) + c

Question 3.
(i) e3x – 6
(ii) e8 – 7x
(iii) \(\frac{1}{6-4 x}\)
Answer:
(i) e3x – 6
[∫eax+b dx = \(\frac{1}{a}\) eax + b + c]
∫e3x – 6 dx = \(\frac{1}{3}\) e3x – 6 + c

(ii) e8 – 7x
[∫eax+b dx = \(\frac{1}{a}\) eax + b + c]
∫e8 – 7x = \(\frac{1}{-7}\) e8 – 7x + c
∫e8 – 7x = \(-\frac{1}{7}\) e8 – 7x + c

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.2

(iii) \(\frac{1}{6-4 x}\)
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.2 5

Question 4.
(i) sec2 \(\frac{x}{5}\)
(ii) cosec (5x + 3) cot (5x + 3)
(iii) 30 sec (2 – 15x) tan (2 – 15x)
Answer:
(i) sec2 \(\frac{x}{5}\)
[∫sec2 (ax + b)dx = \(\frac{1}{a}\) tan (ax + b) + c]
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.2 6

(ii) cosec (5x + 3) cot (5x + 3)
[∫cosec (ax + b) cot (ax + b) dx = – \(\frac{1}{a}\) cosec (ax + b) + c]
∫cosec (5x + 3) cot (5x + 3) dx = – \(\frac{1}{5}\) cosec (5x + 3) + c]

(iii) 30 sec (2 – 15x) tan (2 – 15x)
[∫sec (ax + b) tan (ax + b)dx = \(\frac{1}{a}\) sec (ax + b) + c]
∫30 sec (2 – 15x) tan (2 – 15x)dx = 30 × \(\frac{1}{-15}\) × sec (2 – 15x) + c
= – 2 sec (2 – 15x) + c

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.2

Question 5.
(i) \(\frac{1}{\sqrt{1-(4 x)^{2}}}\)
(ii) \(\frac{1}{\sqrt{1-81 x^{2}}}\)
(iii) \(\frac{1}{1+36 x^{2}}\)
Answer:
(i) \(\frac{1}{\sqrt{1-(4 x)^{2}}}\)
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.2 7

(ii) \(\frac{1}{\sqrt{1-81 x^{2}}}\)
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.2 8

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.2

(iii) \(\frac{1}{1+36 x^{2}}\)
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.2 9

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.3

Tamilnadu State Board New Syllabus Samacheer Kalvi 11th Maths Guide Pdf Chapter 11 Integral Calculus Ex 11.3 Text Book Back Questions and Answers, Notes.

Tamilnadu Samacheer Kalvi 11th Maths Solutions Chapter 11 Integral Calculus Ex 11.3

Integrate the following with respect to x:

Question 1.
(x + 4)5 + \(\) – cosec2 (3x – 1)
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.3 1
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.3 2

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.3

Question 2.
4 cos (5 – 2x) + 9 e3x – 6 + \(\frac{24}{6-4 x}\)
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.3 3

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.3

Question 3.
sec2 \(\frac{x}{5}\) + 18 cos 2x + 10 sec (5x + 3) tan (5x + 3)
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.3 4

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.3

Question 4.
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.3 5
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.3 6
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.3 7

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.3

Question 5.
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.3 8
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.3 9

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.3

Question 6.
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.3 10
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.3 11
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.3 12

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.4

Tamilnadu State Board New Syllabus Samacheer Kalvi 11th Maths Guide Pdf Chapter 11 Integral Calculus Ex 11.4 Text Book Back Questions and Answers, Notes.

Tamilnadu Samacheer Kalvi 11th Maths Solutions Chapter 11 Integral Calculus Ex 11.4

Question 1.
If f'(x) = 4x – 5 and f(2) = 1, find f(x)
Answer:
\(\int f^{\prime}(x) d x=\int(4 x-5) d x\)
f(x) = \(\frac{4 x^{2}}{2}\) – 5x + c
f(x) = 2x2 – 5x + c
But f(2) = 1
2(2)2 – 5(2) + c = 1
8 – 10 + c = 1
c = 3
Thus, f(x) = 2x2 – 5x + 3

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.4

Question 2.
If f'(x) = 9x2 – 6x and f(0) = – 3 find f(x).
Answer:
Given f’ (x) = 9x2 – 6x and f(0) = – 3
\(\frac{\mathrm{d} f(x)}{\mathrm{d} x}\) = 9x2 – 6x
df(x) = (9x2 – 6x) dx
∫ df(x) = ∫ (9x2 – 6x)
∫ df(x) = ∫ 9x2 dx – ∫ 6x dx
f(x) = 9 ∫x2 dx – 6 ∫ x dx
f(x) = 9 × \(\frac{x^{3}}{3}\) – 6 \(\frac{x^{2}}{2}\) + C
f(x) = 3x3 – 3x2 + c —— (1)
f(o) = – 3
(1) ⇒ f(0) = 3 × – 3 . 02 + c
– 3 = 0 – 0 ⇒c = – 3
Substituting in equation (1) we get
f(x) = 3x3 – 3x2 – 3
f(x) = 3(x3 – x2 – 1)

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.4

Question 3.
If f” (x) = 12x – 6 and f(1) = 30, f’ (1) = 5, find f(x)
Answer:
\(\)
f'(x) = \(\) – 6x + c
f'(x) = 6x2 – 6x + c
But f'(1) = 5
6(1)2 – 6(1) + c = 5
c = 5
f” (x) = 6x2 – 6x + 5
\(\int f^{\prime \prime}(x) d x=\int\left(6 x^{2}-6 x+5\right) d x\)
f(x) = \(\frac{6 x^{3}}{3}-\frac{6 x^{2}}{2}\) + 5x + c
f(x) = 2x3 – 3x2 + 5x + c
But f(1) = 30
2(1)3 – 3(1)2 + 5(1) + c = 30
2 – 3 + 5 + c = 30
c = 26
f(x) = 2x3 – 3x2 + 5x + 26

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.4

Question 4.
A ball is thrown vertically upward from the ground with an initial velocity of 39.2 m / sec. If the only force considered is that attributed to the acceleration due to gravity, find
(i) how long will it take for the ball to strike the ground?
(ii) the speed with which will it strike the ground? and
(iii) how high the ball will rise?
Answer:
Initial velocity of the ball = 39.2 in / s
Let s be the distance of the ball from the ground at time t.
u = 39.2m/s.
s = ut – \(\frac{1}{2}\) . gt2 where g = 9.8 m / sec.
s = 39.2 t – \(\frac{1}{2}\) × (9.8) t2
s = 39.2 t – 49 t2

(i) how long will it take for the ball to strike the ground?
For the ball to strike the ground, s = 0
∴ 39.2 t – 4.9 t2 = 0
t(39.2 – 4.9 t) = 0
39.2 – 4.9 t = 0 since t ≠ 0
4.9 t = 39.2
t = \(\frac{39.2}{4.9}\) = 8
t = 8 sec.

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.4

(ii) The speed with which will it strike the ground?
At t = 8; (1) ⇒ v = -9.8(8) + 39.2
= -78.4 + 39.2
= -39.2
∴ The speed with which the ball will strike the ground is = 39.2 m/s
(iii) At maximum height v = 0
⇒ (2) ⇒ -9.8 t + 39.2 = 0
t = 4 sec
⇒ (3) ⇒ x = \(-\frac{9.8 \times 16}{2}\) + 39.2 × 4
= -78.4 + 156.8 = 78.4 m/s

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.4

Question 5.
A wound is healing in such a way that t days since Sunday the area of the of the wound has been decreasing at a rate of \(-\frac{3}{(t+2)^{2}}\) cm2 per day. If on Monday the area of the wound was 2 cm2
(i) What was the area of the wound on Sunday?
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.4 1

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.4

(ii) What is the anticipated area of the wound on Thursday if it continues to heal at the same rate?
Answer:
(ii) From Sunday to Thursday there are 4 days. Substituting t = 4 in equation (2) we get
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.4 2
∴ The anticipated area of the wound on Thursday = 1.5 sq. cm.

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5

Tamilnadu State Board New Syllabus Samacheer Kalvi 11th Maths Guide Pdf Chapter 11 Integral Calculus Ex 11.5 Text Book Back Questions and Answers, Notes.

Tamilnadu Samacheer Kalvi 11th Maths Solutions Chapter 11 Integral Calculus Ex 11.5

Integrate the following functions with respect to x

Question 1.
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 1
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 2
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 3

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5

Question 2.
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 4
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 5

Question 3.
(2x – 5) (3x + 4x)
Answer:
∫(2x – 5) (3x + 4x) dx
= ∫(72 x + 8x2 – 180 – 20x) dx
= ∫ 72 x dx + ∫82x2 dx – ∫180 dx – ∫2o x dx
= 72∫x dx + 8∫x2dx – 180 ∫dx – 20 ∫x dx
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 6

Question 4.
cot2 x + tan2 x
Answer:
∫cot2 x + tan2 x
= ∫(cosec2x – 1 + sec2x – 1) dx
= ∫(cosec2x + sec2x – 2) dx
= ∫cosec2x dx + ∫sec2x dx – ∫2 dx
= – cot x + tan x – 2x + c
= tan x – cot x – 2x + c

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5

Question 5.
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 7
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 8
[cos 2x = cos2x – sin2x-1
cos 2x = 2 cos2x – 1]
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 9
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 10
= 2 ∫(cos x + cos α) dx
= 2 ∫ cos x dx + 2 ∫ cos α dx
= 2 ∫ cos x dx + 2 ∫ cos α ∫ dx
= 2 sin x + 2 cos α(x) + c
= 2 sin x + 2x cos α + c

Question 6.
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 11
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 12
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 13

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5

Question 7.
\(\frac{3+4 \cos x}{\sin ^{2} x}\)
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 14
= 3 ∫ cosec2 x dx + 4 ∫ cot x cosec x . dx
= 3 ∫ cosec2 x dx + 4 ∫ cosec x cot x dx
= 3 × – cot x + 4 × – cosec x + c
= – 3 cot x – 4 cosec x + c

Question 8.
\(\frac{\sin ^{2} x}{1+\cos x}\)
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 15
= ∫ (1 – cos x) dx
= ∫ dx – ∫ cos x dx
= x – sin x + cannot

Question 9.
\(\frac{\sin 4 x}{\sin x}\)
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 16
[sin 2A = 2 sin A cos A]
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 17
= 4 ∫ cos 2x cos x . dx
= 2 ∫ 2 cos 2x cosx . dx
= 2 ∫ [cos(2x + x) + cos(2x – x)] dx
[2 cos A cos B = cos (A + B) + cos (A – B)]
= 2 ∫ (cos 3x + cos x) dx
= 2 ∫ cos 3x dx + 2 ∫ cos x dx
= 2 \(\frac{\sin 3 x}{3}\) + 2 sin x + c
= 2 [\(\frac{\sin 3 x}{3}\) + sin x] + c

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5

Question 10.
cos 3x cos 2x
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 18

Question 11.
sin2 5x
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 19

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5

Question 12.
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 20
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 21
[sin 2A = 2 sin A cos A]
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 22

Question 13.
ex log a ex
Answer:
∫ex log a ex = ∫e log ax . ex . dx
= ∫ ax ex . dx
= ∫ (ae)x . dx
[∫ax . dx = \(\frac{\mathrm{a}^{x}}{\log \mathrm{a}}\) + c]
= \(\frac{(\mathrm{ae})^{x}}{\log (\mathrm{ae})}\) + c

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5

Question 14.
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 23
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 24
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 25

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5

Question 15.
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 26
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 27
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 28

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5

Question 16.
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 29
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 30
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 31

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5

Question 17.
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 32
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 33
Put x = – 3
– 3 + 1 = A (- 3 + 3) + B (- 3 + 2)
– 2 = A × 0 + B (- 1)
B = 2

Put x = – 2
– 2 + 1 = A(- 2 + 3) + B(- 2 + 2)
– 1 = A × 1 + B × 0
A = – 1
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 34
= – log |x + 2| + 2 log |x + 3| + c
= 2 log |x + 3| – log |x + 2|+ c

Question 18.
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 35
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 36
1 = A(x + 2)2 + B (x – 1) (x + 2) + C (x – 1)

Put x= -2
1 = A(- 2 + 2)2 + B(- 2 – 1) (- 2 + 2) + C(- 2 – 1)
1 = A × 0 + B × 0 + C × – 3
C = \(\frac{1}{3}\)

Put x = 1
1 = A(1 + 2)2 + B (1 – 1) (1 + 2) + C(1 – 1)
1 = A × 32 + B × 0 + C × 0
A = \(\frac{1}{9}\)

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5

Put x = 0
1 = A (0 + 2)2 + B (0 – 1) (0 + 2) + C (0 – 1)
1 = A × 4 – 2B – C
1 = \(\frac{1}{9}\) × 4 – 2B + \(\frac{1}{3}\)
1 = \(\frac{4}{9}+\frac{1}{3}\) – 2BSamacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 37
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 38

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5

Question 19.
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 39
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 40
3x – 9 = A(x + 2) (x2 + 1) + B(x – 1) (x2 + 1) + (Cx + D) (x – 1) (x + 2)
3x – 9 = A (x + 2) (x2 + 1) + B(x – 1) + (x2 + 1) + Cx (x – 1) (x + 2) + D (x – 1) (x + 2)

Put x = – 2
3 × – 2 – 9 = A (- 2 + 2) ((2)2 + 1) + B(- 2 – 1) ((- 2)2 + 1) + C(- 2) (- 2 – 1) (- 2 + 2) + D(- 2 – 1) (- 2 + 2)
– 6 – 9 = A × 0 + B × (-3) (4 + 1) + C × 0 + D × 0
-15 = B ×- 3 × 5
-15 = – 15B ⇒ B = 1

Put x = 1
3 × 1 – 9 = A(1 + 2) (12 + 1) + B(1 – 1) (12 + 1) + C × 1 (1 – 1) (1 + 2) + D(1 – 1) (1 + 2)
3 – 9 = A × 3 × 2 + B × 0 + C × 0 + D × 0
– 6 = 6A ⇒ A = – 1

Put x = 0
3 × 0 – 9 = A(0 + 2) (02 + 1) + B(0 – 1) (02 + 1) + C × 0 (0 – 1) (0 + 2) + D(0 – 1) (0 + 2)
– 9 = 2A – B + 0 – 2D
– 9 = 2A – B – 2D
– 9 = – 2 × – 1 – 1 – 2D
– 9 = – 2 – 1 – 2D
9 = 3 + 2D
⇒ 2D = 9 – 3
⇒ 2D = 6 ⇒ D = 3

Put x = – 1
3 × – 1 – 9 = A(- 1 + 2) ((1)2 + 1) + B(- 1 – 1) ((- 1)2 + 1)) + C × – 1 × (- 1 – 1) (- 1 + 2) + D(- 1 – 1) (- 1 + 2)
– 3 – 9 = A × 1(1 + 1)+ B × (- 2) (1 + 1) – C × – 2 + D × – 2 × 1
– 12 = 2A – 4B + 2C – 2D
– 12 = 2 × -1 – 4 × 1 + 2C – 2 × 3
– 12 = – 2 – 4 + 2C – 6
– 12 = – 12 + 2C ⇒ C = 0
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 41
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 42

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5

Question 20.
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 43
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 44
Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 45
1 = A(x – 2) + B(x – 1)

put x = 2
1 = A(2 – 2) + B(2 – 1)
1 = A × 0 + B × 1
B = 1

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5

Put x = 1
1 = A(1 – 2) + B(1 – 1)
1 = A × – 1 + B × 0
A = – 1

Samacheer Kalvi 11th Maths Guide Chapter 11 Integral Calculus Ex 11.5 46

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4

Tamilnadu State Board New Syllabus Samacheer Kalvi 11th Maths Guide Pdf Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 Text Book Back Questions and Answers, Notes.

Tamilnadu Samacheer Kalvi 11th Maths Solutions Chapter 10 Differentiability and Methods of Differentiation Ex 10.4

Find the derivatives of the following:

Question 1.
y = xcos x
Answer:
y = xcos x
Taking log on both sides
log y = log xcos x
log y = cos x log x
Differentiating with respect to x
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 1

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4

Question 2.
y = xlog x + (log x)x
Answer:
y = xlog x + (log x)x
Let u = xlog x, v = (log x)x
log u = log xlog x
log u = (log x) (log x)
log u = (log x)2
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 2
v = (log x)x
log v = log (log x)x
log v = x log (log x)
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 3

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4

Question 3.
\(\sqrt{x y}\) = e(x – y)
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 4

Question 4.
xy = yx
Answer:
xy = yx
Taking log on both sides
log xy = log yx
y log x = x log y
Differentiate with respect to x
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 5

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4

Question 5.
(cos x)log x
Answer:
y = (cos x)log x
Taking log on both sides
log y = log (cos x)log x
log y = (log x) log (cos x)
Differentiating with respect to x
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 6

Question 6.
\(\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\)
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 7

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4

Question 7.
\(\sqrt{x^{2}+y^{2}}=\tan ^{-1}\left(\frac{y}{x}\right)\)
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 8
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 9
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 10

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4

Question 8.
tan (x + y) + tan (x – y) = x
Answer:
tan (x + y) + tan (x – y) = x
Differentiating with respect to x
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 11

Question 9.
If cos(xy) = x, show that
\(\frac{d y}{d x}=\frac{-(1+y \sin (x y))}{x \sin x y}\)
Answer:
cos (xy) = x
Differentiating with respect to x
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 12

Question 10.
\(\tan ^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}}\)
Answer:
Let y = \(\tan ^{-1} \sqrt{\frac{1-\cos x}{1+\cos x}}\)
[1 – cos 2θ = 2 sin2θ and 1 + cos 2θ = 2 sin2 θ]
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 13
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 14

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4

Question 11.
tan-1 = \(\left(\frac{6 x}{1-9 x^{2}}\right)\)
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 15
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 16

Question 12.
\(\cos \left(2 \tan ^{-1} \sqrt{\frac{1-x}{1+x}}\right)\)
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 17
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 18

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4

Question 13.
x = a cost ; y = a sin3t
Answer:
x = a cost , y = a sin3t
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 19

Question 14.
x = a (cos t + t sin t);
y = a (sin t – t cos t)
Answer:
x = a (cos t + t sin t) , y = a (sin t – t cos t)
\(\frac{d x}{d t}\) = a [- sin t + t cos t + sin t ]
\(\frac{d x}{d t}\) = at cos t —— (1)
y = a (sin t – t cos t)
\(\frac{d x}{d t}\) = a [cos t – (t × – sin t + cos t × 1)]
\(\frac{d x}{d t}\) = a[cos t + t sin t – cos t]
\(\frac{d x}{d t}\) = at sin t —— (2)
From equations (1) and (2) we get
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 20

Question 15.
x = \(\frac{1-t^{2}}{1+t^{2}}\) , y = \(\frac{2 t}{1+t^{2}}\)
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 21

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4

Question 16.
cos-1\(\left(\frac{1-x^{2}}{1+x^{2}}\right)\)
Answer:
Let y = cos-1\(\left(\frac{1-x^{2}}{1+x^{2}}\right)\)
Put x = tan θ
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 22
y = cos-1 (cos 2θ)
y = 2θ
y = 2 tan-1 x
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 23

Question 17.
sin-1 (3x – 4x3)
Answer:
Let y = sin-1 (3x – 4x3)
Put x = sin θ
y = sin-1 (3 sin θ – 4 sin3 θ)
y = sin-1 (sin 3θ)
y = 3θ
y = 3 sin-1 x
\(\frac{d y}{d x}=\frac{3}{\sqrt{1-x^{2}}}\)

Question 18.
tan-1 \(\left(\frac{\cos x+\sin x}{\cos x-\sin x}\right)\)
Answer:
Let y = tan-1 \(\left(\frac{\cos x+\sin x}{\cos x-\sin x}\right)\)
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 24

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4

Question 19.
Find the derivative of sin x2 with respect to x2.
Answer:
Let u = sin x2
\(\frac{\mathrm{d} \mathrm{u}}{\mathrm{d} x}\) = cos (x2) × 2x
\(\frac{\mathrm{d} \mathrm{u}}{\mathrm{d} x}\) = 2x cos (x2)
Let v = x2
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 25

Question 20.
Find the derivative of sin-1\(\left(\frac{2 x}{1+x^{2}}\right)\) with respect to tan-1 x.
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 26

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4

Question 21.
If u = tan-1\(\frac{\sqrt{1+x^{2}}-1}{x}\) and v = tan-1x, find \(\frac{\mathrm{du}}{\mathrm{dv}}\)
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 27
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 28
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 29
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 30

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4

Question 22.
Find the derivative with tan-1\(\left(\frac{\sin x}{1+\cos x}\right)\) with respect to tan-1\(\left(\frac{\cos x}{1+\sin x}\right)\)
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 31
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 32
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 33

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4

Question 23.
If y = sin-1x then find y”.
Answer:
y = sin-1 x
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 34

Question 24.
If y = etan-1x, show that (1 + x2) y” + (2x – 1) y’ = 0
Answer:
y = etan-1x
y = etan-1x \(\left(\frac{1}{1+x^{2}}\right)\)
⇒ y’ = \(\frac{y}{1+x^{2}}\) ⇒ y'(1 + x2) = y
differentiating w.r.to x
y’ (2x) + (1 + x2) (y”) = y’
(i.e.) (1 + x2) y” + y’ (2x) – y’ = 0
(i.e.) (1 + x2) y” + (2x – 1) y’ = 0

Question 25.
If y = \(\frac{\sin ^{-1} x}{\sqrt{1-x^{2}}}\), show that (1 – x2)y2 – 3xy1 – y = 0.
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 35
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 36

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4

Question 26.
If x = a (θ + sin θ), y = a (1 – cos θ) then prove that at θ = \(\frac{\pi}{2}\), y” = \(\frac{1}{a}\)
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 37
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 38

Question 27.
If sin y = x sin (a + y), the prove that \(\frac{d y}{d x}=\frac{\sin ^{2}(a+y)}{\sin a}\), a ≠ nπ
Answer:
Given sin y = x sin (a + y) ——- (1)
Differentiating with respect to x , we get
cos y \(\frac{\mathrm{dy}}{\mathrm{d} x}\) = x cos (a + y) (0 + \(\frac{\mathrm{dy}}{\mathrm{d} x}\)) + sin (a + y) . 1
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 39

Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4

Question 28.
If y = (cos-1 x)2, prove that (1 – x2) \(\frac{\mathrm{d}^{2} \mathrm{y}}{\mathrm{d} x^{2}}\) – x \(\frac{\mathrm{dy}}{\mathrm{d} x}\) – 2 = 0. Hence find y2 when x = 0.
Answer:
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 40
Samacheer Kalvi 11th Maths Guide Chapter 10 Differentiability and Methods of Differentiation Ex 10.4 41