Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.5

Students can download Maths Chapter 3 Ratio and Proportion Ex 3.5 Questions and Answers, Notes, Samacheer Kalvi 6th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 6th Maths Solutions Term 1 Chapter 3 Ratio and Proportion Ex 3.5

Miscellaneous Practice Problems

Question 1.
The maximum speed of some of the animals are given below:
the Elephant = 20 km/h; the
Lion = 80 km/h;
the Cheetah =100 km/h
Find the following ratios of their speeds in simplified form and find which ratio is the least?
(i) the Elephant and the Lion
(ii) the Lion and the Cheetah
(iii) the Elephant and the Cheetah
Solution:
(i) The Elephant: the Lion
= 20 : 80 = \(\frac{20}{80}\) = \(\frac{1}{4}\) = 1 : 4

(ii) the Lion : the Cheetah
= 80 : 100 = \(\frac{80}{100}\) = \(\frac{4}{5}\) = 4 : 5

(iii) the Elephant: the Cheetah
= 20 : 100 = \(\frac{20}{100}\) = \(\frac{1}{5}\) = 1 : 5
The ratio of Elephant to Cheetah is the least.

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.5

Question 2.
A particular high school has 1500 students 50 teachers and 5 administrators. If the school grows to 1800 students and the ratios are maintained, then find the number of teachers and administrators.
Solution:
Administrators : teachers : students = 5 : 50 : 1500 = 1 : 10 : 300
If the school grows to 1800 students then 10 parts = teachers
1 part = administrators
300 parts = 1800
1 part = \(\frac{1800}{300}\) = 6
10 parts = 6 × 10 = 60
So, if the school grows to 1800 students the new ratio is administrators : teachers: students
6 : 60 : 1800

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.5

Question 3.
I have a box which has 3 green, 9 blue, 4 yellow, 8 orange coloured cubes in it.
(a) What is the ratio of orange to yellow cubes?
(b) What is the ratio of green to blue cubes?
(c) How many different ratios can be formed, when you compare each colour to any one of the other colours?
Solution:
Number of green cubes = 3
Number of blue cubes = 9
Number of yellow cubes = 4
Number of orange cubes = 8
(a) Ratio of orange to yellow cubes \(\frac{\text { Number of orange cubes }}{\text { Number of yellow cubes }}=\frac{8}{4}=\frac{2}{1}=2: 1\)
Ratio of orange to yellow cubes = 2 : 1
(b) \(\frac{\text { Number of green cubes }}{\text { Number of blue cubes }}=\frac{3}{9}=\frac{1}{3}\)
Ratio of green to blue cubes = 1 : 3
(c) The ratios can be Orange : Yellow, Orange: blue, Orange : green, Yellow : Orange, yellow : blue, yellow : green, blue : green, blue : orange, blue : yellow, green : orange, green : yellow, green : blue. Thus 12 ratios can be formed.

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.5

Question 4.
A gets double of what B gets and B gets double of what C gets. Find A : B and B : C and verify whether the result is in proportion or not.
Solution:
Let x be the part owned by C then A : B : C = 2(2x) : 2x : x = 4x : 2x : x
A : B = 4x : 2x = 2 : 1
B : C = 2x : x = 2 : 1
A : B : : B : C. i.e, They are in proportion.

Question 5.
The ingredients required for the preparation of Ragi Kali, a healthy dish of Tamilnadu is given below.
Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.5 1
(a) If one cup of ragi flour is used then, what would be the amount of raw rice required?
(b) If 16 cups of water are used, then how much ragi flour should be used?
(c) Which of these ingredients cannot be expressed as a ratio? Why?
Solution:
(i) \(\frac{1}{4}\) cup
(ii) 8 cups
(iii) Ragi flour, Raw rice, and water are in one unit. Sesame oil and salt are in different units. These different units cannot be compared and cannot be expressed as a ratio because the two quantities of a ratio should be in the same unit.

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.5

Question 6.
Antony brushes his teeth in the morning and night on all days of the week. Shabeen brushes her teeth only in the morning. What is the ratio of the number of times they brush their teeth in a week?
Solution:
Number of times Antony brushes a day = 2
Number of times Antony brushes a week = 2 × 7 = 14
Number of times Shabeen brushes a day = 1
Number of times Shabeen brushes a week = 1 × 7 = 7
Number of times Antony brushes : Number of times Antony brushes = 14 : 7 = 2 : 1
The required ratio = 2 : 1

Question 7.
Thirumagal’s mother wears a bracelet made of 35 red beads and 30 blue beads. Thirumagal wants to make smaller bracelets using the same two coloured beads in the same ratio. In how many different ways can she make the bracelets?
Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.5 2
Solution:
Red : blue = 35 : 30 = 7 : 6
Different ways (i) 7 : 6
(ii) 14 : 12;
(iii) 21 : 18;
(iv) 28 : 24

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.5

Question 8.
Team A wins 26 matches out of 52 matches. Team B wins three fourth of 52 matches played. Which team has a better winning record?
Solution:
Team A = \(\frac{26}{52}\) = \(\frac{1}{2}\)
Team B = \(\frac{3}{4}\) × 52 = 39
Team B has a better winning record.

Question 9.
In a school excursion, 6 teachers and 12 students from 6th standard and 9 teachers and 27 students from 7th standard, 4 teachers and 16 students from 8th standard took part. Which class has the least teacher to student ratio?
Solution:
Std VI – teachers: students = 6 : 12 = 1 : 2
Std VII – teachers : students = 9 : 27 = 1 : 3
Std VIII – teachers : students = 4 : 16 = 1 : 4
Std VIII has the least ratio.

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.5

Question 10.
Fill the boxes using any set of suitable numbers 6 : ___ : : ___ : 15
Solution:
6 : ……. = …….. : 15
Product of the extremes = 6 × 15 = 90
Set of suitable numbers
1 and 90, 2 and 45, 3 and 30, 5 and 18, 6 and 15

Question 11.
From your school diary, write the ratio of the number of holidays to the number of working days in the current academic year.
Solution:
Number of holidays = 145
Number of working days = 220
Holidays : working days = 145 : 220
= \(\frac{145}{220}\)
= \(\frac{29}{44}\)
= 29 : 44

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.5

Question 12.
If the ratio of Green, Yellow and Black balls in a bag is 4 : 3 : 5, then
(a) Which is the most likely ball that you can choose from the bag?
(b) How many balls in total are there in the bag if you have 40 black balls in it?
(c) Find the number of green and yellow balls in the bag.
Solution:
Green : Yellow : Black = 4 : 3 : 5
(i) Blackballs;
(ii) 96 balls (32 + 24 + 40);
(iii) green balls = 32
yellow balls = 24

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.4

Students can download Maths Chapter 3 Ratio and Proportion Ex 3.4 Questions and Answers, Notes, Samacheer Kalvi 6th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 6th Maths Solutions Term 1 Chapter 3 Ratio and Proportion Ex 3.4

Question 1.
Fill in the blanks.
(i) If the cost of 3 pens is Rs 18, then the cost of 5 pens is ……..
(ii) If Karkuzhali earns Rs 1800 in 15 days, then she earns Rs 3000 in …….. days
Solution:
(i) ₹ 30
Hint: \(5 \times \frac{18}{3}\) = 5 × 6 = ₹ 30
(ii) 25 Days
Hint:
\(\frac{1800}{3000}=\frac{15}{x}\)
⇒ x = \(\frac{15 \times 3000}{1800}\) = 25 days

Question 2.
Say True or False.
(i) If the weight of 40 books is 8 kg, then the weight of 15 books is 3 kg.
(ii) A car travels 90 km in 3 hours with constant speed. It will travel 140 km in 5 hours at the same speed.
Solution:
(i) True
Hint: Weight of 1 book = \(\frac{8}{40}=\frac{1}{5} \mathrm{kg}\)
Flence Weight of 15 books = \(\frac{1}{5} \times 15=3 \mathrm{kg}\)
(ii) False
1 hour the car travels = \(\frac{90}{3}\) = 30 km
In 5 hours the car travels = 30 × 5 = 150 km

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.4

Question 3.
If a person reads 20 pages of a book in 2 hours, how many pages will he read in 8 hours at the same speed?
Solution:
In 2 hours, pages read = 20
In 1 hour, pages read = \(\frac{20}{2}\) = 10
In 8 hours, pages read = 10 × 8
= 80 pages

Question 4.
The cost of 15 chairs is ₹ 7500. Find the number of such chairs that can be purchased for ₹ 12,000?
Solution:
Cost of 15 chairs = Rs 7500
Cost of 1 chair = Rs \(\frac{7500}{15}\) = Rs 500
Number of chairs that can be purchased for Rs 12000 = \(\frac{12000}{500}\) = 24 chairs

Question 5.
A car covers a distance of 125 km in 5 kg of LP Gas. How much distance will it cover in 3 kg of LP Gas?
Solution:
In 5 kg of LPG gas, distance covered = 125 km
In 1 kg of LPG gas, distance covered = \(\frac{125}{5}\) = 25 km
In 3 kg of LPG gas, distance covered = 3 × 25 km = 75 km

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.4

Question 6.
Cholan walks 6 km in 1 hour at a constant speed. Find the distance covered by him in 20 minutes at the same speed.
Solution:
In 1 hour (60 minutes), distance covered = 6 km
In 1 minute, distance covered = \(\frac{6 km}{60 min}\) = \(\frac{6000 m}{60}\) = 100 m
In 20 minutes, distance covered = 20 × 100 m = 2000 m = 2 km

Question 7.
The number of correct answers given by Kaarmugilan and Kavitha in a quiz competition are in the ratio 10 : 11. If they had scored a total of 84 points in the competition, then how many points did Kavitha get?
Solution:
Total points scored = 84 Ratio = 10 : 11
Sum of the ratio = 10 + 11 = 21
21 parts = 84 points
1 part = \(\frac{84}{21}\) = 4 points
Kavitha = 11 parts
Kaarmugilan = 10 parts
Foints scored by Kavitha = 11 parts = 11 × 4 points = 44 points

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.4

Question 8.
Karmegam made 54 runs in 9 overs and Asif made 77 runs in 11 overs. Whose run rate is better? (run rate = ratio of runs to overs)
Solution:
Karmegam Runs made in 9 overs = 54
Runs made in 1 over = \(\frac{54}{9}\) = 6 runs
Asif Runs made in 11 overs = 77
Runs made in 1 over = \(\frac{77}{11}\) = 7 runs
∴ Asif’s run rate is better than Karmegam.

Question 9.
You purchase 6 apples for Rs 90 and your friend purchases 5 apples for Rs 70. Whose purchase is better?
Solution:
Myself
Cost of 6 apples = Rs 90
Cost of 1 apple = \(\frac{Rs 90}{6}\) = Rs 15
Friend’s purchase
Cost of 5 apples = Rs 70
Cost of 1 apple = \(\frac{70}{5}\) = Rs 14
∴ Friend’s purchase is better than mine.

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.4

Objective Type Questions

Question 10.
If a Barbie doll costs ₹ 90, then the cost of 3 such dolls is ₹ _____
(a) 260
(b) 270
(c) 30
(d) 93
Solution:
(b) 270
Hint:
Cost of 3 dolls = 90 × 3 = ₹ 270

Question 11.
If 8 oranges cost Rs 56, then the cost of 5 oranges is Rs …….
(a) 42
(b) 48
(c) 35
(d) 24
Solution:
(c) 35

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.4

Question 12.
If a man walks 2 km in 15 minutes, then he will walk _____ km in 45 minutes.
(a) 10
(b) 8
(c) 6
(d) 12
Solution:
(c) 6
Hint:
1 min he walks = \(\frac{2}{15}\) km
45 min he walks = \(\frac{2}{15}\) × 45 = 6 km.

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.2

Students can download Maths Chapter 3 Ratio and Proportion Ex 3.2 Questions and Answers, Notes, Samacheer Kalvi 6th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 6th Maths Solutions Term 1 Chapter 3 Ratio and Proportion Ex 3.2

Question 1.
Fill in the blanks of the given equivalent ratios.
(i) 3 : 5 = 9 : ……
(ii) 4 : 5 = …… : 10
(iii) 6 : …… = 1 : 2
Solution:
(i) 15
Hint: \(\frac{3}{5}=\frac{3 \times 3}{5 \times 3}=\frac{9}{15}\)
(ii) 8
Hint: \(\frac{4}{5}=\frac{4 \times 2}{5 \times 2}=\frac{8}{10}\)
(iii) 12
Hint: \(\frac{1}{2}=\frac{1 \times 6}{2 \times 6}=\frac{6}{12}\)

Question 2.
Complete the table.
Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.2 1
Solution:
(i) 1 feet = 12 inches
3 feet = 3 × 12 inches = 36 inches
72 inches = 6 × 12 inches = 6 feet

(ii) 1 week = 7 days
2 weeks = 2 × 7 days = 14 days
63 days = 9 × 7 days = 9 weeks

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.2

Question 3.
Say True or False.
(i) 5 : 7 is equivalent to 21 : 15
(ii) If 40 is divided in the ratio 3 : 2, then the larger part is 24
Solution:
(i) False
Hint: \(\frac{21}{15}=\frac{7}{5}=7: 5\)
(ii) True
Hint: \(\frac{3}{5} \times 40=24\)

Question 4.
Give two equivalent ratios for each of the following.
(i) 3 : 2
(ii) 1 : 6
(iii) 5 : 4
Solution:
(i) 3 : 2
Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.2 2
3 : 2 = 6 : 4 = 9 : 6

(ii) 1 : 6
Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.2 3
1 : 6 = 2 : 12 = 3 : 18

(iii) 5 : 4
Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.2 4
5 : 4 = 10 : 8 = 15 : 12

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.2

Question 5.
Which of the two ratios is larger?
(i) 4 : 5 or 8 : 15
(ii) 3 : 4 or 7 : 8
(iii) 1 : 2 or 2 : 1
Solution:
(i) 4 : 5 (or) 8 : 15
Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.2 5
4 : 5 > 8 : 15

(ii) 3 : 4 (or) 7 : 8
Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.2 6
7 : 8 > 3 : 4

(iii) 1 : 2 (or) 2 : 1
1 : 2 = \(\frac{1}{2}\)
2 : 1 = \(\frac{2}{1}\)
= 2
\(\frac{2}{1}\) > \(\frac{1}{2}\)
2 : 1 > 1 : 2

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.2

Question 6.
Divide the numbers given below in the required ratio.
(i) 20 in the ratio 3 : 2
(ii) 27 in the ratio 4 : 5
(iii) 40 in the ratio 6 : 14.
Solution:
(i) Ratio = 3 : 2
Sum of the ratio = 3 + 2 = 5
5 parts = 20
1 part = \(\frac{20}{5}\) = 4
3 parts = 3 × 4 = 12
2 parts = 2 × 4 = 8
20 can be divided in the form as 12, 8.

(ii) Ratio = 4 : 5
Sum of the ratio = 4 + 5 = 9
9 parts = 27
1 part = \(\frac{27}{9}\) = 3
4 parts = 4 × 3 = 12
5 parts = 5 × 3 =15
27 can be divided in the form as 12, 15.

(iii) 40 in the ratio 6 : 14
Ratio = 6 : 14
Sum of the ratio = 6 + 14 = 20
20 parts = 40
1 part = \(\frac{40}{20}\) = 2
6 parts = 2 × 6 = 12
14 parts = 2 × 14 = 28
40 can be divided in the form as 12, 28.

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.2

Question 7.
In a family, the amount spent in a month for buying Provisions and Vegetables are in the ratio 3 : 2. If the allotted amount is Rs 4000, then what will be the amount spent for
(i) Provisions and
(ii) Vegetables?
Solution:
Allotted amount = Rs 4000
Ratio = 3 : 2
Sum of the ratio = 3 + 2 = 5
5 parts = Rs 4000
1 part = Rs \(\frac{4000}{5}\) = Rs 800
Provisions : Vegetables = 3 : 2
3 parts = 3 × Rs 800 = Rs 2400
2 parts = 2 × Rs 800 = Rs 1600
Amount spent for provisions = Rs 2400
Amount spent for vegetables = Rs 1600

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.2

Question 8.
A line segment 63 cm long is to be divided into two parts in the ratio 3 : 4. Find the length of each part.
Solution:
Total length = 63 cm Ratio = 3 : 4
Sum of the ratio = 3 + 4 = 7
7 parts = 63 cm
1 part = \(\frac{63}{7}\) = 9 cm
3 parts = 3 × 9 cm = 27 cm
4 parts = 4 × 9 cm = 36 cm
∴ 63 cm can be divided into the parts as 27 cm and 36 cm.

Objective Type Questions

Question 9.
If 2 : 3 and 4 : …… are equivalent ratios, then the missing term is
(a) 6
(b) 2
(c) 4
(d) 3
Solution:
(a) 6

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.2

Question 10.
An equivalent ratio of 4 : 7 is
(a) 1 : 3
(b) 8 : 15
(c) 14 : 8
(d) 12 : 21
Solution:
(d) 12 : 21

Question 11.
Which is not an equivalent ratio of \(\frac{16}{24}\)?
(a) \(\frac{6}{9}\)
(b) \(\frac{12}{18}\)
(c) \(\frac{10}{15}\)
(d) \(\frac{20}{28}\)
Solution:
(d) \(\frac{20}{28}\)

Samacheer Kalvi 6th Maths Guide Term 1 Chapter 3 Ratio and Proportion Ex 3.2

Question 12.
If Rs 1600 is divided
(a) Rs 480
(b) Rs 800
(c) Rs 1000
(d) Rs 200
Solution:
(c) Rs 1000

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1

Students can download Maths Chapter 4 Geometry Ex 4.1 Questions and Answers, Notes, Samacheer Kalvi 10th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 10th Maths Solutions Chapter 4 Geometry Ex 4.1

Question 1.
Check whether the which triangles are similar and find the value of x.
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1 1
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1 2
Solution:
(i) In ∆ABC and ∆AED
\(\frac { AB }{ AD } \) = \(\frac { AC }{ AE } \)
\(\frac { 8 }{ 3 } \) = \(\frac{11}{\frac{2}{2}}\)
\(\frac { 8 }{ 3 } \) = \(\frac { 11 }{ 4 } \) ⇒ 32 ≠ 33
∴ The two triangles are not similar.

(ii) In ∆ABC and ∆PQC
∠PQC = 70°
∠ABC = ∠PQC = 70°
∠ACB = ∠PCQ (common)
∆ABC ~ ∆PQC
\(\frac { 5 }{ X } \) = \(\frac { 6 }{ 3 } \)
6x = 15
x = \(\frac { 15 }{ 6 } \) = \(\frac { 5 }{ 2 } \)
∴ x = 2.5
∆ ABC and ∆PQC are similar. The value of x = 2.5

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1

Question 2.
A girl looks the reflection of the top of the lamp post on the mirror which is 66 m away from the foot of the lamppost. The girl whose height is 12.5 m is standing 2.5 m away from the mirror. Assuming the mirror is placed on the ground facing the sky and the girl, mirror and the lamppost are in a same line, find the height of the lamp post.
Solution:
Let the height of the tower ED be “x” m. In ∆ABC and ∆EDC.
∠ABC = ∠CED = 90° (vertical Pole)
∠ACB = ∠ECD (Laws of reflection)
∆ ABC ~ ∆DEC
\(\frac { AB }{ DE } \) = \(\frac { BC }{ EC } \)
\(\frac { 1.5 }{ x } \) = \(\frac { 0.4 }{ 87.6 } \)
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1 3
x = \(\frac{1.5 \times 87.6}{0.4}\) = \(\frac{1.5 \times 876}{4}\)
= 1.5 × 219 = 328.5
The height of the Lamp Post = 328.5 m

Question 3.
A vertical stick of length 6 m casts a shadow 400 cm long on the ground and at the same time a tower casts a shadow 28 m long. Using similarity, find the height of the tower.
Solution:
In ∆ABC and ∆PQR,
∠ABC = ∠PQR = 90° (Vertical Stick)
∠ACB = ∠PRQ (Same time casts shadow)
∆BCA ~ ∆QRP
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1 4
\(\frac { AB }{ PQ } \) = \(\frac { BC }{ QR } \)
\(\frac { 6 }{ x } \) = \(\frac { 4 }{ 28 } \)
4x = 6 × 28 ⇒ x = \(\frac{6 \times 28}{4}\) = 42
Length of the lamp post = 42m

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1

Question 4.
Two triangles QPR and QSR, right angled at P and S respectively are drawn on the same base QR and on the same side of QR. If PR and SQ intersect at T, prove that PT × TR = ST × TQ.
Solution:
In ∆PQT and ∆STR we have
∠P = ∠S = 90° (Given)
∠PTQ = ∠STR (Vertically opposite angle)
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1 5
By AA similarity
∆PTQ ~ ∆STR we get
\(\frac { PT }{ ST } \) = \(\frac { TQ }{ TR } \)
PT × TR = ST × TQ
Hence it is proved.

Question 5.
In the adjacent figure, ∆ABC is right angled at C and DE ⊥ AB. Prove that ∆ABC ~ ∆ADE and hence find the lengths of AE and DE.
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1 6
Solution:
In ∆ABC and ∆ADE
∠ACB = ∠AED = 90°
∠A = ∠A (common)
∴ ∆ABC ~ ∆ADE (By AA similarity)
\(\frac { BC }{ DE } \) = \(\frac { AB }{ AD } \) = \(\frac { AC }{ AE } \)
\(\frac { 12 }{ DE } \) = \(\frac { 13 }{ 3 } \) = \(\frac { 5 }{ AE } \)
In ∆ABC, AB2 = BC2 + AC2
= 122 + 52 = 144 + 25 = 169
AB = \(\sqrt { 169 }\) = 13
Consider, \(\frac { 13 }{ 3 } \) = \(\frac { 5 }{ AE } \)
∴ AE = \(\frac{5 \times 3}{13}\) = \(\frac { 15 }{ 13 } \)
AE = \(\frac { 15 }{ 13 } \) and DE = \(\frac { 36 }{ 13 } \)
Consider, \(\frac { 12 }{ DE } \) = \(\frac { 13 }{ 3 } \)
DE = \(\frac{12 \times 3}{13}\) = \(\frac { 36 }{ 13 } \)

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1

Question 6.
In the adjacent figure, ∆ACB ~ ∆APQ. If BC = 8 cm, PQ = 4 cm, BA = 6.5 cm and AP = 2.8 cm, find CA and AQ.
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1 7
Solution:
Given ∆ACB ~ ∆APQ
\(\frac { AC }{ AP } \) = \(\frac { BC }{ PQ } \) = \(\frac { AB }{ AQ } \)
\(\frac { AC }{ 2.8 } \) = \(\frac { 8 }{ 4 } \) = \(\frac { 6.5 }{ AQ } \)
Consider \(\frac { AC }{ 2.8 } \) = \(\frac { 8 }{ 4 } \)
4 AC = 8 × 2.8
AC = \(\frac{8 \times 2.8}{4}\) = 5.6 cm
Consider \(\frac { 8 }{ 4 } \) = \(\frac { 6.5 }{ AQ } \)
8 AQ = 4 × 6.5
AQ = \(\frac{4 \times 6.5}{8}\) = 3.25 cm
Length of AC = 5.6 cm; Length of AQ = 3.25 cm

Question 7.
If figure OPRQ is a square and ∠MLN = 90°. Prove that
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1 8
(i) ∆LOP ~ ∆QMO
(ii) ∆LOP ~ ∆RPN
(iii) ∆QMO ~ ∆RPN
(iv) QR2 = MQ × RN.
Solution:
(i) In ∆LOP and ∆QMO
∠OLP = ∠OQM = 90°
∠LOP = ∠OMQ (Since OQRP is a square OP || MN)
∴ ∆LOP~ ∆QMO (By AA similarity)

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1

(ii) In ∆LOP and ∆RPN
∠OLP = ∠PRN = 90°
∠LPO = ∠PNR (OP || MN) .
∴ ∆LOP ~ ∆RPN (By AA similarity)

(iii) In ∆QMO and ∆RPN
∠MQO = ∠NRP = 90°
∠RPN = ∠QOM (OP || MN)
∴ ∆QMO ~ ∆RPN (By AA similarity)

(iv) We have ∆QMO ~ ∆RPN
\(\frac { MQ }{ PR } \) = \(\frac { QO }{ RN } \)
\(\frac { MQ }{ QR } \) = \(\frac { QR }{ RN } \)
QR2 = MQ × RN
Hence it is proved.

Question 8.
If ∆ABC ~ ∆DEF such that area of ∆ABC is 9cm2 and the area of ∆DEF is 16 cm2 and BC = 2.1 cm. Find the length of EF.
Solution:
Given ∆ABC ~ ∆DEF
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1 9
\(\frac { 9 }{ 16 } \) = \(\frac{(2.1)^{2}}{\mathrm{E} \mathrm{F}^{2}}\)
(\(\frac { 3 }{ 4 } \))2 = (\(\frac { 2.1 }{ EF } \))2
\(\frac { 3 }{ 4 } \) = \(\frac { 2.1 }{ EF } \)
EF = \(\frac{4 \times 2.1}{3}\) = 2.8 cm
Legth of EF = 2.8 cm

Question 9.
Two vertical poles of heights 6 m and 3 m are erected above a horizontal ground AC. Find the value of y.
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1 10
Solution:
In the ∆PAC and ∆BQC
∠PAC = ∠QBC = 90°
∠C is common
∆PAC ~ QBC
\(\frac { AP }{ BQ } \) = \(\frac { AC }{ BC } \)
\(\frac { 6 }{ y } \) = \(\frac { AC }{ BC } \)
∴ \(\frac { BC }{ AC } \) = \(\frac { y }{ 6 } \) …..(1)
In the ∆ACR and ∆QBC
∠ACR = ∠QBC = 90°
∠A is common
∆ACR ~ ABQ
\(\frac { RC }{ QB } \) = \(\frac { AC }{ AB } \)
\(\frac { 3 }{ y } \) = \(\frac { AC }{ AB } \)
\(\frac { AB }{ AC } \) = \(\frac { y }{ 3 } \) ……..(2)
By adding (1) and (2)
\(\frac { BC }{ AC } \) + \(\frac { AB }{ AC } \) = \(\frac { y }{ 6 } \) + \(\frac { y }{ 3 } \)
1 = \(\frac{3 y+6 y}{18}\)
9y = 18 ⇒ y = \(\frac { 18 }{ 9 } \) = 2
The Value of y = 2m

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1

Question 10.
Construct a triangle similar to a given triangle PQR with its sides equal to \(\frac { 2 }{ 3 } \) of the corresponding sides of the triangle PQR (scale factor \(\frac { 2 }{ 3 } \) ).
Solution:
Given ∆PQR, we are required to construct another triangle whose sides are \(\frac { 2 }{ 3 } \) of the corresponding sides of the ∆PQR

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1 11
Steps of construction:
(i) Construct a ∆PQR with any measurement.
(ii) Draw a ray QX making an acute angle with QR on the side opposite to the vertex P.
(iii) Locate 3 points Q1, Q2 and Q3 on QX.
So that QQ1 = Q1Q2 = Q2Q3
(iv) Join Q3 R and draw a line through Q2 parallel to Q3 R to intersect QR at R’.
(v) Draw a line through R’ parallel to the line RP to intersect QP at P’. Then ∆ P’QR’ is the required triangle.

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1

Question 11.
Construct a triangle similar to a given triangle LMN with its sides equal to \(\frac { 4 }{ 5 } \) of the corresponding sides of the triangle LMN (scale factor \(\frac { 4 }{ 5 } \) ).
Solution:
Given a triangle LMN, we are required to construct another ∆ whose sides are \(\frac { 4 }{ 5 } \) of the corresponding sides of the ∆LMN.

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1 12

Steps of Construction:

  1. Construct a ∆LMN with any measurement.
  2. Draw a ray MX making an acute angle with MN on the side opposite to the vertex L.
  3. Locate 5 Points Q1, Q2, Q3, Q4, Q5 on MX.
    So that MQ1 = Q1Q2 = Q2Q3 = Q3Q4 = Q4Q5
  4. Join Q5 N and draw a line through Q4. Parallel to Q5N to intersect MN at N’.
  5. Draw a line through N’ parallel to the line LN to intersect ML at L’.
    ∴ ∆L’ MN’ is the required triangle.

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1

Question 12.
Construct a triangle similar to a given triangle ABC with its sides equal to \(\frac { 6 }{ 5 } \) of the corresponding sides of the triangle ABC (scale factor \(\frac { 6 }{ 4 } \)).
Solution:
Given triangle ∆ABC, we are required to construct another triangle whose sides are \(\frac { 6 }{ 5 } \) of the corresponding sides of the ∆ABC.
Steps of construction
(i) Construct an ∆ABC with any measurement.
(ii) Draw a ray BX making an acute angle with BC.
(iii) Locate 6 points Q1, Q2, Q3, Q4, Q5, Q6 on BX such that
BQ1 = Q1Q2 = Q2Q3 = Q3Q4 = Q5Q6
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1 13
(iv) Join Q5 to C and draw a line through Q6 parallel to Q5 C intersecting the extended line BC at C’.
(v) Draw a line through C’ parallel to AC intersecting the extended line segment AB at A’.
∆A’BC’ is the required triangle.

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1

Question 13.
Construct a triangle similar to a given triangle PQR with its sides equal to \(\frac { 7 }{ 3 } \) of the corresponding sides of the triangle PQR (scale factor \(\frac { 7 }{ 3 } \)).
Solution:
Given triangle ABC, we are required to construct another triangle whose sides are \(\frac { 7 }{ 3 } \) of the corresponding sides of the ∆ABC.
Steps of construction
(i) Construct a ∆PQR with any measurement.
(ii) Draw a ray QX making an acute angle with QR on the side opposite to the vertex P.
(iii) Locate 7 points Q1, Q2, Q3, Q4, Q5, Q6, Q7 on QX.
So that
QQ1 = Q1Q2 = Q2Q3 = Q3Q4 = Q5Q6 = Q6Q7

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.1 14
(iv) Join Q3 to R and draw a line through Q7 parallel to Q3R intersecting the extended line segment QR at R’.
(v) Draw a line through parallel to RP.
Intersecting the extended line segment QP at P’.
∴ ∆P’QR’ is the required triangle.

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3

Students can download Maths Chapter 4 Geometry Ex 4.3 Questions and Answers, Notes, Samacheer Kalvi 10th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 10th Maths Solutions Chapter 4 Geometry Ex 4.3

Question 1.
A man goes 18 m due east and then 24 m due north. Find the distance of his current position from the starting point?
Solution:
Let the initial position of the man be “O” and his final
position be “B”.
By Pythagoras theorem
In the right ∆ OAB,
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3 1
OB2 = OA2 + AB2
= 182 + 242
= 324 + 576 = 900
OB = \(\sqrt { 900 }\) = 30
The distance of his current position is 30 m

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3

Question 2.
There are two paths that one can choose to go from Sarah’s house to James house. One way is to take C street, and the other way requires to take A street and then B street. How much shorter is the direct path along C street? (Using figure).
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3 2
Solution:
Distance between Sarah House and James House using “C street”.
AC2 = AB2 + BC2
= 22 + 1.52
= 4 + 2.25 = 6.25
AC = \(\sqrt { 6.25 }\)
AC = 2.5 miles
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3 3
Distance covered by using “A Street” and “B Street”
= (2 + 1.5) miles = 3.5 miles
Difference in distance = 3.5 miles – 2.5 miles = 1 mile

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3

Question 3.
To get from point A to point B you must avoid walking through a pond. You must walk 34 m south and 41 m east. To the nearest meter, how many meters would be saved if it were possible to make a way through the pond?
Solution:
In the right ∆ABC,
By Pythagoras theorem
AC2= AB2 + BC2 = 342 + 412
= 1156 + 1681 = 2837
AC = \(\sqrt { 2837 }\)
= 53.26 m
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3 4
Through A one must walk (34m + 41m) 75 m to reach C.
The difference in Distance = 75 – 53.26
= 21.74 m

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3

Question 4.
In the rectangle WXYZ, XY + YZ = 17 cm, and XZ + YW = 26 cm.
Calculate the length and breadth of the rectangle?
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3 5
Solution:
Let the length of the rectangle be “a” and the breadth of the rectangle be “b”.
XY + YZ = 17 cm
b + a = 17 …….. (1)
In the right ∆ WXZ,
XZ2 = WX2 + WZ2
(XZ)2 = a2 + b2
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3 6
XZ = \(\sqrt{a^{2}+b^{2}}\)
Similarly WY = \(\sqrt{a^{2}+b^{2}}\) ⇒ XZ + WY = 26
2 \(\sqrt{a^{2}+b^{2}}\) = 26 ⇒ \(\sqrt{a^{2}+b^{2}}\) = 13
Squaring on both sides
a2 + b2 = 169
(a + b)2 – 2ab = 169
172 – 2ab = 169 ⇒ 289 – 169 = 2 ab
120 = 2 ab ⇒ ∴ ab = 60
a = \(\frac { 60 }{ b } \) ….. (2)
Substituting the value of a = \(\frac { 60 }{ b } \) in (1)
\(\frac { 60 }{ b } \) + b = 17
b2 – 17b + 60 = 0
(b – 2) (b – 5) = 0
b = 12 or b = 5
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3 7
If b = 12 ⇒ a = 5
If b = 6 ⇒ a = 12
Lenght = 12 m and breadth = 5 m

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3

Question 5.
The hypotenuse of a right triangle is 6 m more than twice of the shortest side. If the third side is 2 m less than the hypotenuse, find the sides of the triangle.
Solution:
Let the shortest side of the right ∆ be x.
∴ Hypotenuse = 6 + 2x
Third side = 2x + 6 – 2
= 2x + 4
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3 8
In the right triangle ABC,
AC2 = AB2 + BC2
(2x + 6)2 = x2 + (2x + 4)2
4x2 + 36 + 24x = x2 + 4x2 + 16 + 16x
0 = x2 – 24x + 16x – 36 + 16
∴ x2 – 8x – 20 = 0
(x – 10) (x + 2) = 0
x – 10 = 0 or x + 2 = 0
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3 9
x = 10 or x = -2 (Negative value will be omitted)
The side AB = 10 m
The side BC = 2 (10) + 4 = 24 m
Hypotenuse AC = 2(10) + 6 = 26 m

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3

Question 6.
5 m long ladder is placed leaning towards a vertical wall such that it reaches the wall at a point 4m high. If the foot of the ladder is moved 1.6 m towards the wall, then find the distance by which the top of the ladder would slide upwards on the wall.
Solution:
“C” is the position of the foot of the ladder “A” is the position of the top of the ladder.
In the right ∆ABC,
BC2 = AC2 – AB2 = 52 – 42
= 25 – 16 = 9
BC = \(\sqrt { 9 }\) = 3m.
When the foot of the ladder moved 1.6 m toward the wall.
The distance between the foot of the ladder to the ground is
BE = 3 – 1.6 m
= 1.4 m
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3 10
Let the distance moved upward on the wall be “h” m
The ladder touch the wall at (4 + h) M
In the right triangle BED,
ED2 = AB2 + BE2
52 = (4 + h)2 + (1.4)2
25 – 1.96= (4 + h)2
∴ 4 + h = \(\sqrt { 23.04 }\)
4 + h = 4. 8 m
h = 4.8 – 4
= 0.8 m
Distance moved upward on the wall = 0.8 m

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3

Question 7.
The perpendicular PS on the base QR of a ∆PQR intersects QR at S, such that QS = 3 SR. Prove that 2PQ2 = 2PR2 + QR2.
Solution:
Given QS = 3SR
QR = QS + SR
= 3SR + SR = 4SR
SR = \(\frac { 1 }{ 4 } \) QR …..(1)
QS = 3SR
SR = \(\frac { QS }{ 3 } \) ……..(2)
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3 11
From (1) and (2) we get
\(\frac { 1 }{ 4 } \) QR = \(\frac { QS }{ 3 } \)
∴ QS = \(\frac { 3 }{ 4 } \) QR ………(3)
In the right ∆ PQS,
PQ2 = PS2 + QS2 ……….(4)
Similarly in ∆ PSR
PR2 = PS2 + SR2 ………..(5)
Subtract (4) and (5)
PQ2 – PR2 = PS2 + QS2 – PS2 – SR2
= QS2 – SR2
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3 12
PQ2 – PR2 = \(\frac { 1 }{ 2 } \) QR2
2PQ2 – 2PR2 = QR2
2PQ2 = 2PR2 + QR2
Hence the proved.

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3

Question 8.
In the adjacent figure, ABC is a right angled triangle with right angle at B and points D, E trisect BC. Prove that 8AE2 = 3AC2 + 5AD2.
Solution:
Since the Points D, E trisect BC.
BD = DE = CE
Let BD = DE = CE = x
BE = 2x and BC = 3x
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.3 13
In the right ∆ABD,
AD2 = AB2 + BD2
AD2 = AB2 + x2 ……….(1)
In the right ∆ABE,
AE2 = AB2 + 2BE2
AE2 = AB2 + 4X2 ………..(2) (BE = 2x)
In the right ∆ABC
AC2 = AB2 + BC2
AC2 = AB2 + 9x2 …………… (3) (BC = 3x)
R.H.S = 3AC2 + 5AD2
= 3[AB2 + 9x2] + 5 [AB2 + x2] [From (1) and (3)]
= 3AB2 + 27x2 + 5AB2 + 5x2
= 8AB2 + 32x2
= 8 (AB2 + 4 x2)
= 8AE2 [From (2)]
= R.H.S.
∴ 8AE2 = 3AC2 + 5AD2

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions

Students can download Maths Chapter 7 Mensuration Additional Questions and Answers, Notes, Samacheer Kalvi 9th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 7 Mensuration Additional Questions

I. Choose the Correct Answer

Question 1.
If the sides of a triangles are 5 cm, 6 cm and 7 cm then the area is ……..
(a) 18 cm²
(b) 6 √2 cm²
(c) 6 √6 cm²
(d) 6 √3 cm²
Solution:
(c) 6 √6 cm²

Question 2.
The perimeter of an equilateral triangle is 60 cm then the area is ………
(a) 60 √3 cm²
(b) 20 √3 cm²
(c) 50 √3 cm²
(d) 100 √3 cm²
Solution:
(d) 100 √3 cm²

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions

Question 3.
The total surface area of the cuboid with dimension 20 cm × 30 cm × 15 cm is ………
(a) 2700 cm²
(b) 1500 cm²
(c) 2500 cm²
(d) 3000 cm²
Solution:
(a) 2700 cm²

Question 4.
The number of bricks each measuring 70 cm × 80 cm × 40 cm that will be required to build a wall whose dimensions are 7 m × 8 m × 4 m is ……..
(a) 4000
(b) 3000
(c) 2000
(d) 1000
Solution:
(d) 1000

Question 5.
The volume of a cube is 4913 m² then the length of its side is ……..
(a) 13 m
(b) 17 m
(c) 34 m
(d) 27 m
Solution:
(b) 17 m

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions

II. Answer the Following Questions

Question 6.
A field is in the shape of a trapezium whose parallel sides are 25 m and 10 m. The non parallel sides are 14 m and 13 m. Find the area of the field.
Solution:
The non parallel sides are 13 m and 14 m. Draw BE || AD. Such that BE = 13 m
∴ ABED is a parallelogram
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions 1
To find Area of a ΔBCE
a = 13 m, b = 15 m and c = 14 m
s = \(\frac{a+b+c}{2}\)
= \(\frac{13+15+14}{2}\)
= \(\frac{42}{2}\)
= 21 m
s – a = 21 – 13 = 8 m
s – b = 21 – 15 = 6 m
s – c = 21 – 14 = 7 m
Area of a ΔBCE
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions 2
= 2² × 3 × 7
= 84 m²
Let the height of the triangle BF be x
Area of the ΔBEC = 84 m²
= \(\frac{1}{2}\) × b × h = 84
= \(\frac{1}{2}\) × 15 × h = 84
x = \(\frac{84×2}{15}\)
= \(\frac{56}{5}\) m
= 11.2 m
Area of parallelogram ABED = base × height sq. units
= 10 × 11.2 m²
= 112 m²
∴ Area of the field = Area of ΔBCE + Area of parallelogram ABED
= 84 m² + 112 m²
= 196 m²
(OR)
Area of the field = Area of the trapezium ABCD
= \(\frac{1}{2}\) h (a + b)
= \(\frac{1}{2}\) × 11.2 (25 + 10)
= \(\frac{1}{2}\) × 11.2 (35)
= 196 m²

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions

Question 7.
Find the area of a quadrilateral ABCD in which AB = 8 cm, BC = 6 cm, CD = 8 cm, DA = 10 cm and AC = 10 cm and ⌊B = 90°.
Solution:
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions 3
In ΔABC, ⌊B = 90°
∴ ABC is a right angle triangle
Area of the right ΔABC = \(\frac{1}{2}\) × AB × BC sq.units
= \(\frac{1}{2}\) × 8 × 6 cm²
= 24 cm²
In ΔACD a = 10 cm, b = 8 cm and c = 10 cm
s = \(\frac{a+b+c}{2}\)
= \(\frac{10+8+10}{2}\)
= \(\frac{28}{2}\)
= 14 cm
s – a = 14 – 10 = 4 cm
s – b = 14 – 8 = 6 cm
s – c = 14 – 10 = 4 cm
Area of ΔACD = \(\sqrt{s(s-a)(s-b)(s-c)}\)
= \(\sqrt{14×4×6×4}\)
= \(\sqrt{2×7×4×2×3×4}\)
= 4 × 2 \(\sqrt{21}\) cm²
= 8\(\sqrt{21}\) cm²
= 8 × 4.58
= 36.64 cm²
Area of the quadrilateral ABCD
= Area of ΔABC + Area of ΔACD
= 24 cm² + 36.64 cm²
= 60.64 cm²
Area of the quadrilateral = 60.64 cm²

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions

Question 8.
The length, breadth and height of a room are 5 m, 4 m and 3 m respectively. Find the cost of white washing the walls of the room and the ceiling at the rate of Rs 7.50 per m².
Solution:
Length of the room (l) = 5 m
Breadth of the room (b) = 4 m
Height of the room (h) = 3 m
Area for white washing = Lateral surface area of four walls + Area of the ceiling
= 2(l + b) × h + (l × b)
= 2(5 + 4) × 3 + (5 × 4) m²
= (2 × 9 × 3 + 20) m²
= (54 + 20) m²
= 74 m²
Cost of white washing for one m² = Rs 7.50
Cost of white washing for 74 m² = Rs 74 × 7.50
= Rs 555
The required cost = Rs 555

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions

Question 9.
How many hollow blocks of size 30 cm × 15 cm × 20 cm are needed to construct a wall 60 m in length 0.3 m in breadth and 2 m in height.
Solution:
Length of a wall = 60 m = 6000 cm
Breadth of a wall = 0.3 m = 30 cm
Height of a wall = 2 m = 200 cm
Volume of the wall = l × b × h sq. unit
= 6000 × 30 × 200 cm³
For hollow block
l = 30 cm, b = 15 cm, h = 20 cm
Volume of one hollow block = l × b × h
= 30 × 15 × 20 cm²
Number of hollow blocks required
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions 4
= 4000
∴ Number of bricks = 4000

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions

Question 10.
Find the number of cubes of side 3 cm that can be cut from a cuboid of dimensions 10 cm × 9 cm × 6 cm.
Solution:
Side of a cube = 3 cm
Volume of a cube = a³ cm
= 3 × 3 × 3 cm³
Length of the cuboid (l) = 10 cm
Breadth of the cuboid (b) = 9 cm
Height of the cuboid (h) = 6 cm
Volume of the cuboid = l × b × h cu. unit
= 10 × 9 × 6 cm
Number of cubes
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Additional Questions 5
∴ Number of cubes = 20

Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions

Students can download Maths Chapter 6 Trigonometry Additional Questions and Answers, Notes, Samacheer Kalvi 9th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 6 Trigonometry Additional Questions

I. Choose the Correct Answer

Question 1.
The value of cosec² 60 – 1 is equal to ……..
(a) cos² 60
(b) cot² 60
(c) sec² 60
(d) tan² 60
Solution:
(b) cot² 60

Question 2.
The value of cos 60° cos 30° – sin 60° sin 30° is equal is ……..
(a) cosec 90°
(b) tan 90°
(c) sin 30° + cos 30°
(d) cos 90°
Solution:
(d) cos 90°

Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions

Question 3.
The value of \(\frac{sin 57°}{cos 33°}\) is …….
(a) cot 63°
(b) tan 27°
(c) 1
(d) 0
Solution:
(c) 1

Question 4.
If 3 cosec 36° = sec 54° then the value of x is ……..
(a) 0
(b) 1
(c) \(\frac{1}{3}\)
(d) \(\frac{3}{4}\)
Solution:
(c) \(\frac{1}{3}\)

Question 5.
If cos A cos 30° = \(\frac{√3}{4}\), then the measures of A is ……..
(a) 90°
(b) 60°
(c) 45°
(d) 30°
Solution:
(b) 60°

Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions

II. Answer the Following Question

Question 1.
Given Sec θ = \(\frac{13}{12}\). Calculate all other trigonometric ratios.
Solution:
In the right triangle ABC
Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions 1
BC² = AC² – AB²
= 13² – 12²
= 169 – 144
= 25
∴ BC = \(\sqrt{25}\)
= 5
Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions 2

Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions

Question 2.
If 3 cot A = 4 check weather \(\frac{1- tan²A}{1+ tan²A}\) = cos² A – sin² A or not?
Solution:
3 cot A = 4
cot A = \(\frac{4}{3}\)
In the right ΔABC
Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions 3
AC² = AB² + BC²
= 4² + 3²
= 16 + 9
= 25
= \(\sqrt{25}\)
= 5
Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions 4
Hence \(\frac{1- tan²A}{1+ tan²A}\) = cos² A – sin² A
R.H.S = cos² A – sin² A
Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions 5
L.H.S = R.H.S

Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions

Question 3.
Evaluate \(\frac{sin 30° + tan 45° – cosec 60°}{sec 30° + cos 60° + cot 45°}\)
Solution:
sin 30° = \(\frac{1}{2}\); tan 45° = 1; cosec 60° = \(\frac{2}{√3}\); sec 30° = \(\frac{2}{√3}\); cos 60° = \(\frac{1}{2}\); cot 45° = 1
\(\frac{sin 30° + tan 45° – cosec 60°}{sec 30° + cos 60° + cot 45°}\)
Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions 6
The value is \(\frac{43-24√3}{11}\)

Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions

Question 4.
Find A if sin 20° tan A sec 70° = √3
Solution:
sin 20° . tan A . sec 70° = √3
sin 20° . sec 70° . tan A = √3
sin (90° – 70°). sec 70° . tan A = √3
cos 70° × latex]\frac{1}{cos 70°}[/latex] tan A = √3
tan A = √3
tan A = tan 60°
∴ ∠A = 60°

Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions

Question 5.
Find the area of the right triangle with hypotenuse 8 cm and one of the acute angles is 57°
Solution:
In the ΔABC
Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions 7
sin C = \(\frac{AB}{AC}\)
Sin 57° = \(\frac{AB}{8}\)
0.8387 = \(\frac{AB}{8}\)
∴ AB = 0.8387 × 8
= 0.71 cm
In the ΔABC
cos C = \(\frac{BC}{AC}\)
cos 57° = \(\frac{BC}{8}\)
0.5446 = \(\frac{BC}{8}\)
BC = 0.5446 × 8
= 4.36
Area of the right ΔABC
= \(\frac{1}{2}\) × AB × BC sq. units
= \(\frac{1}{2}\) × 6.71 × 4.36 cm²
= 14.62 cm²
Area of the Δ = 14.62 cm²

Samacheer Kalvi 9th Maths Guide Chapter 6 Trigonometry Additional Questions

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Students can download Maths Chapter 3 Algebra Additional Questions and Answers, Notes, Samacheer Kalvi 10th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 10th Maths Solutions Chapter 3 Algebra Additional Questions

I. Choose the correct answer.

Question 1.
The HCF of x2 – y2; x3 – y3, …………. xn – yn where n ∈ N is
(1) x – y
(2) x + y
(3) xn – yn
(4) do not intersect
Answer:
(1) x – y

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 2.
Which of the following is correct.
(i) Every polynomial has finite number of multiples
(ii) LCM of two polynomials of degree “2” may be a constant
(iii) HCF of 2 polynomials may be a constant
(iv) Degree of HCF of two polynomials is always less than degree of L.C.M.
(1) (i) and (iii)
(2) (iii) and (iv)
(3) (iii) only
(4) (iv) only
Answer:
(3) (iii) only

Question 3.
The HCF of x2 – 2xy + y2 and x4 – y4 is …………….
(1) 1
(2) x + y
(3) x – y
(4) x2 – y2
Answer:
(3) x – y

Question 4.
The L.C.M. of ak ak+3, ak+5 where K ∈ N is …………
(1) ak+5
(2) ak
(3) ak+6
(4) ak+9
Answer:
(1) ak+5

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 5.
The LCM of (x + 1)2 (x – 3) and
(x2 – 9) (x + 1) is
(1) (x + 1)3 (x2 – 9)
(2) (x + 1)2 x2 – 9)
(3) (x + 1)2 (x – 3)
(4) (x – 9) (x + 1)
Answer:
(2) (x + 1)2(x2 – 9)

Question 6.
If \(\frac{a^{3}}{a-b}\) is added with \(\frac{b^{3}}{b-a}\) then the new expressions is …………
(1) a2 – ab + b2
(2) a2 + ab + b2
(3) a3 + b3
(4) a3 – b3
Answer:
(2) a2 + ab + b2

Question 7.
The solution set of x + \(\frac { 1 }{ x } \) = \(\frac { 5 }{ 2 } \) is ………….
(1) 2,\(\frac { 1 }{ 2 } \)
(2) 2,-\(\frac { 1 }{ 2 } \)
(3) -2, – \(\frac { 1 }{ 2 } \)
(4) -2, \(\frac { 7 }{ 2 } \)
Answer:
(1) 2,\(\frac { 1 }{ 2 } \)

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 8.
On dividing \(\frac{x^{2}-25}{x+3}\) by \(\frac{x+5}{x^{2}-9}\) is equal to ……………….
(1) (x – 5)(x + 3)
(2) (x + 5) (x – 3)
(3) (x – 5)(x – 3)
(4) (x + 5)(x + 3)
Answer:
(3) (x – 5)(x – 3)

Question 9.
The square root of (x + 11)2 – 44x is ………….
(1)|(x – 11)2
(2) |x + 11|
(3) |11 – x2|
(4) |x – 11|
Answer:
(4) |x – 11|

Question 10.
If α, β are the zeros of the polynomial p(x) = 4x2 + 3x + 7 then \(\frac{1}{\alpha}\) + \(\frac{1}{\beta}\) is equal to …………
(1) \(\frac { 7 }{ 3 } \)
(2) – \(\frac { 7 }{ 3 } \)
(3) \(\frac { 3 }{ 7 } \)
(4) – \(\frac { 3 }{ 7 } \)
Answer:
(4) – \(\frac { 3 }{ 7 } \)

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 11.
The value of Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 1 is  ……….
(1) -5
(2) 5
(3) 4
(4) -3
Answer:
(2) 5

Question 12.
If α and β are the roots of the equation ax2 + bx + c = 0 then (α + β)2 is ……………..
(1) \(\frac{-b^{2}}{a^{2}}\)
(2) \(\frac{-c^{2}}{a^{2}}\)
(3) \(\frac{-b^{2}}{a^{2}}\)
(4) \(\frac { bc }{ a } \)
Answer:
(3) \(\frac{-b^{2}}{a^{2}}\)

Question 13.
The roots of the equation x2 – 8x + 12 = 0 are
(1) real and equal
(2) real and rational
(3) real and irrational
(4) unreal
Answer:
(2) real and rational

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 14.
If one root of the equation is the reciprocal of the other root in ax2 + bx + c = 0 then …………
(1) a = c
(2) a = b
(3) b = c
(4) c = 0
Answer:
(1) a = c

Question 15.
If α and β are the roots of the equation x2 + 2x + 8 = 0 then the value of \(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\) is ………………
(1) \(\frac { 1 }{ 2 } \)
(2) 6
(3) \(\frac { 3 }{ 2 } \)
(4) –\(\frac { 3 }{ 2 } \)
Answer:
(4) –\(\frac { 3 }{ 2 } \)

Question 16.
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 2
are………
(1) 4, 6, 6
(2) 6, 6, 4
(3) 6, 4, 6
(4) 4, 4, 6
Answer:
(3) 6, 4, 6

Question 17.
If [-1 -2 4] Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 3 then the value of “a” is ………….
(1) 2
(2) -4
(3) 4
(4) -2
Answer:
(4) -2

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 18.
The matrix A given by (aij)2×2 if aij = i – j is …………
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 4
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 5

Question 19.
If A is of order 4 × 3 and B is of order 3 × 4 then the order of BA is ………………….
(1) 3 × 4
(2) 4 × 4
(3) 3 × 3
(4) 4 × 1
Answer:
(3) 3 × 3

Question 20.
If Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 6 then “x” is ……………..
(1) 1
(2) 2
(3) 3
(4) 4
Answer:
(4) 4

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

II. Answer the following.

Question 1.
Solve x + y = 7; y + z = 4; z + x = 1
Answer:
x + y = 7 ……(1)
y + z = 4 ………(2)
z + x = 1 …………(3)
Adding (1); (2) and (3)
2x + 2y + 2z = 12
x + y + z = 6 ….(4)
From (1) ⇒ x + y = 7
7 + z = 6
z = 6 – 7 = -1
From (2) ⇒ x + 4 = 6
x = 6 – 4 = 2
From (3) ⇒ y + 1 = 6
y = 6 – 1 = 5
The value of x = 2, y = 5 and z = -1

Question 2.
Find the HCF of 25x4y7; 35x3y8; 45x3y3
Answer:
25x4y7 = 5 × 5 × x4 × y7
35x3y8 = 5 × 7 × x3 × y8
45 x3y3 = 3 × 3 × 5 × x3 × y3
H.C.F. = 5x3y3

Question 3.
Find the values of k for which the following equation has equal roots.
(k – 12)x2 + 2(k – 12)x + 2 = 0
Solution:
\(\frac{(k-12)}{a} x^{2}+\frac{2(k-12)}{b} x+\frac{2}{c}=0\)
Δ = b2 – 4ac = (2(k – 12))2 – 4(6 – 12)(2)
= 4(k – 12)[(k – 12) – 2]
= 4(k – 12)(k – 14)
The given equation will have equal roots, if A = 0
⇒ 4(k – 12)(k – 14) = 0
k – 12 = 0 or k – 14 = 0
k = 12, 14

Question 4.
Find the LCM of x3 + y3; x3 – y3; x4 + x2y2 + y4
Answer:
x3 + y3 = (x + y) (x2 – xy + y2)
x3 – y3 = (x – y)(x2 + xy + y2)
x4 + x2y2 + y4 = (x2 + y2)2 – (xy)2
= (x2 + y2 + xy)
L.C.M. = (x + y)(x – y) (x2 + xy + y2)
(x2 – xy + y2)
= [(x + y) (x2 – xy +y2)]
[(x – y) (x2 + xy + y2)]
= (x3 + y3) (x3 – y3)
L.C.M. = x6 – y6

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 5.
The sum of two numbers is 15. If the sum of their reciprocals is \(\frac{3}{10}\), find the numbers.
Solution:
Let the numbers be α, β
Sum of the roots = α + β = 15 ………….. (1)
sum of their reciprocals = \(\frac{1}{\alpha}+\frac{1}{\beta}=\frac{3}{10}\) ……….. (2)
\(\frac{\beta+\alpha}{\alpha \beta}=\frac{3}{10}\)
10(α + β) = 3αβ …………. (3)
3αβ = 10 × 15 = 150
Products of the roots = αβ = 50 ………….. (4)
∴ From (1) & (4), we have
x2 – 15x + 50 = 0
(x – 10)(x – 5) = 0 ⇒ x = 10, 5
∴ he numbers are 10, 5.

Question 6.
For What value of k, the G.C.D. of [x2 + x – (2k + 2)] and 2x2 + kx – 12 is (x + 4)?
Answer:
p(x) = x2 + x – (2k + 2)
g(x) = 2x2 + kx – 12
G.C.D. = x + 4
when x + 4 is the G.C.D.
p(-4) = 0 or g(-4) = 0
[Hint: Take any one of the polynomial]
g(x) = 2x2 + kx – 12 = 0
2(-4)2 + k (-4) – 12 = 0
2(16) – 4x – 12 = 0
32 – 4k – 12 = 0
20 = 4k
k = \(\frac { 20 }{ 4 } \) = 5
The value of k = 5

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 7.
Simplify \(\frac{x^{2}+x-6}{x^{2}+4 x+3}\)
Answer:
x2 + x – 6 = (x + 3) (x – 2)
x2 + 4x + 3 = (x + 3) (x + 1)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 7
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 8

Question 8.
Multiply
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 10
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 11

Question 9.
if P = \(\frac{x^{3}-36}{x^{2}-49}\) and Q = \(\frac { x+6 }{ x+7 } \) find the value of \(\frac { P }{ Q } \).
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 12

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 10.
Simplify
\(\frac { x }{ x+y } \) – \(\frac { y }{ x-y } \)
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 13

Question 11.
Find the square root of (x + 11)2 – 44x
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 14

Question 12.
Find the square root of x4 + \(\frac{1}{x^{4}}\) + 2
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 15

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 13.
Solve the equation 2x – 1 – \(\frac { 2 }{ x-2 } \) = 3
Answer:
2x – 1 – \(\frac { 2 }{ x-2 } \) = 3
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 16
(x – 3) (x – 1) = 0
x – 3 = 0 or x – 1 = 0
x = 3 or x = 1
The solution set is (1,3)

Question 14.
Find the roots of \(\sqrt { 2 }\) x2 + 7x + 5\(\sqrt { 2 }\) = 0
Answer:
\(\sqrt { 2 }\) x2 + 7x + 5 \(\sqrt { 2 }\) = 0
\(\sqrt { 2 }\) x2 + 2x + 5x + 5 \(\sqrt { 2 }\) = 0
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 17
\(\sqrt { 2 }\) x (x + \(\sqrt { 2 }\)) + 5 (x + \(\sqrt { 2 }\)) = 0
(x + \(\sqrt { 2 }\)) (\(\sqrt { 2 }\) x + 5) = 0
(x + \(\sqrt { 2 }\) ) = 0 or \(\sqrt { 2 }\) x + 5 = 0
x = – \(\sqrt { 2 }\) or \(\sqrt { 2 }\) x + 5 = 0
x = – \(\sqrt { 2 }\) or \(\sqrt { 2 }\) x = -5
x = \(\frac{-5}{\sqrt{2}}\)
The roots are and – \(\sqrt { 2 }\) and \(\frac{-5}{\sqrt{2}}\)

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 15.
Solve \(\sqrt { x+5 }\) = 2x + 3 using formula method.
Answer:
\(\sqrt { x+5 }\) = 2x + 3
(\(\sqrt { x+5 }\))2 = (2x + 3)2
x + 5 = 4x2 + 9 + 12x
0 = 4x2 + 12x – x + 9 – 5
0 = 4x2 + 11x + 4
Here a = 4, b = 11, c = 4
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 18

Question 16.
The sum of a number and its reciprocal is \(\frac { 37 }{ 6 } \). Find the number.
Answer:
Let the require number be “x”
Its reciprocal is \(\frac { 1 }{ x } \)
By the given data
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 87
The required number is \(\frac { 1 }{ 6 } \) or 6

Question 17.
Determine the nature of the roots of the equation 2x2 + x – 1 = 0
Answer:
2x2 + x – 1 = 0
Here a = 2,b = 1,c = -1
∆ = b2 – 4 ac
= 12 – 4(2) (-1)
= 1 + 8
= 9
Since b2 – 4ac > 0 the roots are real and unequal

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 18.
Find the value of k for which the given equation 9x2 + 3kx + 4 = 0 has real and equal roots.
Answer:
9x2 + 3 kx + 4 = 0
a = 9, b = 5k, c = 4
since the equation has real and equal roots
b2 – 4ac = 0
(3k)2 – 4(9) (4) = 0
9k2 – 144 = 0
9k2 = 144
k2 = \(\frac { 144 }{ 9 } \) = 16
k = \(\sqrt { 16 }\)
k = ± 4

Question 19.
If one root of the equation
3x2 – 10x + 3 = 0 is \(\frac { 1 }{ 3 } \) find the other root
Answer:
α and β are the roots of the equation 3x2 – 10x + 3 = 0
Sum of the roots (α + β) = \(\frac { 10 }{ 3 } \)
Product of the roots (αβ) = \(\frac { 3 }{ 3 } \) = 1
one of the roots is \(\frac { 1 }{ 3 } \) (say α = \(\frac { 1 }{ 3 } \))
αβ = 1
\(\frac { 1 }{ 3 } \) × β = 1
β = 3
The other roots is 3

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 20.
Form the quadratic equation whose roots are 3 + \(\sqrt { 7 }\); 3 – \(\sqrt { 7 }\)
Answer:
Sum of the roots = 3 + \(\sqrt { 7 }\) + 3 – \(\sqrt { 7 }\)
= 6
Product of the roots = (3 + \(\sqrt { 7 }\)) (3 – \(\sqrt { 7 }\) )
= 32 – (\(\sqrt { 7 }\))2
= 9 – 7
= 2
The required equation is
x2 – (sum of the roots) x + product of the roots = 0
x2 – (6)x + 2 = 0
x – 6x + 2 = 0

Question 21.
If α and β are the roots of the equation 3x2 – 5x + 2 = 0, then find the value of α – β.
Answer:
α and β are the roots of the equation
3x2 – 5x + 2 = 0
α + β = \(\frac { 5 }{ 3 } \), αβ = \(\frac { 2 }{ 3 } \)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 19

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 22.
Determine the matrix A = (aij)3×2 if aij = 3i – 2j
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 20
aij = 3i – 2j
a11 = 3(1) – 2(1) = 3 – 2 = 1
a12 = 3(1) – 2(1) = 3 – 4 = 1
a21 = 3(2) – 2(1) = 6 – 2 = 4
a22 = 3(2) – 2(2) = 6 – 4 = 2
a31 = 3(3) – 2(1) = 9 – 2 = 7
a32 = 3(3) – 2(2) = 9 – 4 = 5
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 21

Question 23.
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 22
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 23

Question 24.
Find if
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 24
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 25

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 25.
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 26
find BA
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 27

Question 26.
Find the unknowns a, b, c, d, x, y in the given matrix equation.
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 28
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 29
Equating the corresponding elements of the two matrices we get
d + 1 = 2
d = 2 – 1 = 1
10 + a = 2a + 1
10 – 1 = 2a – a
9 = a
36 – 2 = b – 5
3b – b = -5 + 2
2b = -3 ⇒ b = \(\frac { -3 }{ 2 } \)
a – 4 = 4c ⇒ a – 4c = 4
9 – 4c = 4 ⇒ 4c = 4 – 9
-4c = -5 ⇒ c = \(\frac { 5 }{ 4 } \)
The value of a = 9, b = \(\frac { -3 }{ 2 } \), c = \(\frac { 5 }{ 4 } \) and d = 1

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 27.
Prove that
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 30
multiplication is inverse to each other.
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 31
AB = BA = I
Multiplication of matrices are iverse to each other.

III. Answer the following questions.

Question 1.
Solve x – \(\frac { y }{ 5 } \) = 6; y – \(\frac { z }{ 7 } \) = 8; z – \(\frac { x }{ 2 } \) = 10
Answer:
x – \(\frac { y }{ 5 } \) = 6
multiply by 5
5x – y = 30 …….(1)
y – \(\frac { z }{ 7 } \) = 8
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 32
Substitute the value of x = 8 in (1)
5(8) – y = 30
– y = 30 – 40 = -10
∴ y = 10
Substitute the value of x = 8 in (3)
2z – 8 = 20
2z = 20 + 8
z = \(\frac { 28 }{ 2 } \) = 14
The value of x = 8, y = 10 and z = 14

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 2.
Solve for x,y and z using the given 3 equations
\(\frac { 2 }{ y } \) – \(\frac { 4 }{ z } \) + \(\frac { 3 }{ x } \) = 3; \(\frac { 5 }{ x } \) – \(\frac { 4 }{ y } \) – \(\frac { 8 }{ z } \) = 8 ; \(\frac { 6 }{ y } \) + \(\frac { 6 }{ z } \) +\(\frac { 1 }{ x } \) = 2
Answer:
Let \(\frac { 1 }{ x } \) = a, \(\frac { 1 }{ y } \) = b, \(\frac { 1 }{ z } \) = c
3a + 2b – 4c = 3 ………(1)
5a – 4b – 8c = 8 ………(2)
a + 6b + 6c = 2 ………(3)
(1) × 2 ⇒ 6a + 4b – 8c = 6 …..(1)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 33
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 34

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 3.
100 pencils are to be kept inside three types of boxes A, B and C. If 5 boxes of type A, 3 boxes of type B, 2 boxes of type C are used 6 pencils are left out. If 3 boxes of type A, 5 boxes of type B, 2 boxes of type C are used 2 pencils are left out. If 2 boxes of type A, 4 boxes of type B and 4 boxes of type C are used, there is a space for 4 pencils. Find the number of pencils that each box can hold.
Answer:
Let the number of pencil in the box A be “x”
Let the number of pencil in the box B be “y”
Let the number of pencil in the box C be “z”
By the given first condition
5x + 3y + 2z = 94 ….(1)
By the given second condition
3x + 5y + 2z = 98 ….(2)
By the given third condition
2x + 4y + 4z = 104 ….(3)
subtract (1) and (3)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 35
substitute x = 8 and y = 10 in (1)
5(8) + 3(10) + 2z = 94
40 + 30 + 2z = 94
2z = 94 – 70
2z = 24
z = \(\frac { 24 }{ 2 } \) = 12
Number of pencil in box A = 8
Number of pencil in box B = 10
Number of pencil in box C = 12

Question 4.
What 2 masons earn in a day is earned by 3 male workers in a day. The daily wages of 15 female workers is ₹30 more than the total daily wages of 5 masons and 3 male workers. If one mason, one male worker and 2 female workers are engaged for a day, the builder has to pay ?160 as wages. Find the daily wages of a mason, a male worker and a female worker.
Answer:
Let the daily wage of a mason be ₹ x
Let the daily wage of a male worker be ₹ y
Let the daily wage of a female worker be ₹ z
By the given first condition
2x = 3y
2x – 3y = 0 …..(1)
By the given second condition
15z = 5x + 3y + 30
-5x – 3y + 15z = 30
5x + 3y – 15z = -30 ………(2)
By the given third condition
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 36
substitute the value of x = 60 in ….(1)
2(60) – 3y = 0
120 = 3y
y = \(\frac { 120 }{ 3 } \) = 40
substitute the value of x = 60 and y = 40 in (3)
60 + 40 + 2z = 160
2z = 160 – 100
2z = 60
z = \(\frac { 60 }{ 2 } \) = 30
Daily wages of a manson = ₹60
Daily wages of a male worker = ₹40
Daily wages of a female worker = ₹30

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 5.
Find the G.C.D. of x3 – 10x2 + 31x – 30 and 2x3 – 8x2 + 2x + 12
Answer:
p(x) = x3 – 10x2 + 31x – 30
g(x) = 2x3 – 8x2 + 2x + 12
= 2(x3 – 4x2 + x + 6)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 37
G.C.D. = x2 – 5x + 6

Question 6.
The G.C.D of x4 + 3x3 + 5x2 + 26x + 56 and x4 + 2x3 – 4x2 – x + 28 is x2 + 5x + 7. Find their L.C.M.
Answer:
p(x) = x4 + 3x3 + 5x2 + 26x + 56
g(x) = x4 + 2x3 – 4x2 – x + 28
G.C.D. = x2 + 5x + 7
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 38

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 7.
Find the values of “a” and “b” given that p(x) = (x2 + 3x + 2) (x2 – 4x + a); g(x) = (x2 – 6x + 9) × (x2 + 4x + b) and their G.C.D is (x + 2) (x – 3)
Answer:
p(x) = (x2 + 3x + 2) (x2 – 4x + a)
= (x + 1) (x + 2) (x2 – 4x + a)
G.C.D is given as (x + 2) (x – 3)
x – 3 is a factor of x2 – 4x + a
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 39
p(3) = 0
9 – 4(3) + a = 0
9 – 12 + a = 0
– 3 + a =0
a = 3
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 40
g(x) = (x2 – 6x + 9) (x2 + 4x + 6)
= (x – 3) (x – 3) (x2 + 4x + b)
But G.C.D. is (x + 2) (x – 3)
∴ x + 2 is a factor of x2 + 4x + 6
g(-2) = 0
4 + 4(-2) + b = 0
4 – 8 + 6 = 0
-4 + b = 0
b = 4
The value of a = 3 and b = 4

Question 8.
Find the other polynomial g(x), given that LCM, HCF and p(x) as (x – 1) (x – 2) (x2 – 3x + 3); x – 1 and x3 – 4x2 + 6x – 3 respectively.
Answer:
LC.M. = (x – 1) (x – 2) (x2 – 3x + 3)
HCF = (x – 1)
p(x) = x3 – 4x2 + 6x – 3
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 41
p(x) = (x – 1) (x2 – 3x + 3)
p(x) × g(x) = LCM × HCF
(x – 1) (x2 – 3x + 3) × g(x)
= (x – 1) (x – 2) (x2 – 3x + 3) (x – 1)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 42
The other polynominal g(x) x2 – 3x + 2

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 9.
Divide
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 43
Answer:
2x2 + x – 3 = 2x2 + 3x – 2x – 3
= x(2x + 3) – 1 (2x + 3)
= (2x + 3) (x – 1)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 44
2x2 + 5x + 3 = 2x2 + 3x + 2x + 3
= x(2x + 3) + 1 (2x + 3)
= (2x + 3) (x + 1)
x2 -1 = (x + 1) (x – 1)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 45
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 46

Question 10.
Simplify
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 47
Answer:
(x2 – x – 6) = (x – 3) (x + 2)
2x2 + 5x – 3 = 2×2 + 6x – x – 3
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 48
= 2x (x + 3) -1 (x + 3)
= (x + 3) (2x – 1)
x2 + 5x + 6 = (x + 2) (x + 3)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 49
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 50

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 11.
Find the square root of (6x2 + 5x – 6) (6x2 – x – 2) (4x2 + 8x + 3)
Answer:
6x2 + 5x – 6 = 6x2 + 9x – 4x – 6
= 3x(2x + 3) -2 (2x + 3)
= (2x + 3) (3x – 2)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 51
6x2 – x – 2 = 6x2 – 4x + 3x – 2
= 2x (3x – 2) + 1 (3x – 2)
= (3x – 2) (2x + 1)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 52
4x2 + 8x + 3 = 4x2 + 6x + 2x + 3
= 2x(2x + 3) + 1 (2x + 3)
= (2x + 3) (2x + 1)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 53
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 54

Question 12.
Find the square root of the polynomial
\(\frac{4 x^{2}}{y^{2}}\) + \(\frac { 8x }{ y } \) + 16 + 12 \(\frac { y }{ x } \) + \(\frac{9 y^{2}}{x^{2}}\)
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 55
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 555

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 13.
If m – nx + 28x2 + 12x3 + 9x4 is a perfect square, then find the values of m and n.
Answer:
Arrange the polynomial in descending power of x.
9x4 + 12x3 + 28x2 – nx + m
Now,
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 56
Since the given polynomial is a perfect square,
-nx – 16x = 0
-x (n + 16) = 0
n + 16 = 0 ⇒ n = -16
m – 16 = 0 ⇒ m = 16
The value m = 16 and n = -16

Question 14.
If b + \(\frac { a }{ x } \) + \(\frac{13}{x^{2}}\) – \(\frac{6}{x^{3}}\) + \(\frac{1}{x^{4}}\) is a perfect square, find the values of “a” and “b”
Answer:
Arrange the values of “a” and “b”
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 57
Since it is a perfect square
\(\frac { a }{ x } \) + \(\frac { 12 }{ x } \) = 0
\(\frac { 1 }{ x } \) (a + 12) = 0
a + 12 = 0 ⇒ a = -12
b – 4 = 0 ⇒ b = 4
The value of a = -12 and b = 4

Question 15.
Solve
\(\frac { 1 }{ x + 1 } \) + \(\frac { 4 }{ 3x+6 } \) = \(\frac { 2 }{ 3 } \)
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 58
6x2 – 12x + 9x – 18 = 0
6x(x – 2) + 9(x – 2) = 0
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 59
(x – 2) (6x + 9) = 0
x – 2 = 0 or 6x + 9 = 0
x = 2 or 6x + 9 = 0
x = 2 or 6x = -9
x = – \(\frac { 9 }{ 6 } \) = \(\frac { -3 }{ 2 } \)
The solution is \(\frac { -3 }{ 2 } \) or 2

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 16.
A two-digit number is such that the product of the digits is 14. When 45 is added to the number, the digits interchange their places. Find the number (solve by completing square method)
Answer:
Let the ten’s digit be “x”
∴ The unit digit = \(\frac { 14 }{ x } \)
∴ The number is 10x + \(\frac { 14 }{ x } \)
If the digits are interchanged the number is \(\frac { 140 }{ x } \) + x
By the given condition
10x + \(\frac { 14 }{ x } \) + 45 = \(\frac { 140 }{ x } \) + x
multiply by x
10x2 + 14 + 45x = 140 + x2
9x2 + 45x + 14 – 140 = 0
9x2 + 45x – 126 = 0
Divided by 9
x2 + 5x – 14 = 0
x2 + 5x = 14
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 60
Since the digit of the number can not be negative
∴ x = 2
The number = 10x + \(\frac { 14 }{ x } \)
= 20 + \(\frac { 14 }{ 2 } \)
= 20 + 7
= 27
The number is 27

Question 17.
A rectangular garden 10 m by 16 m is to be surrounded by a concreate walk of uniform width. Given that the area of walk is 120 sqm assuming the width of walk be ‘V form the equation then solve it by formula method.
Answer:
Area of the garden = 16 × 10
= 160 sq.m
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 61
Area of the garden with walking area
= (1.6 + 2x) (10 + 2x)
= 160 + 32x + 20x + 4x2
= 4x2 + 52x + 160
Area of the concrete walk = Area of the garden with walk – Area of garden
= 4x2 + 52x + 160 – 160
120 = 4x2 + 52x
4x2 + 52x – 120 = 0
(÷ by 4) ⇒ x2 + 13x – 30 = 0
Here a = 1, b = 13, c = -30
(comparing with ax2 + bx + c = 0)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 62
Since the width cannot be negative. Width of the garden = 2 m

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 18.
If α and β are the roots of the equation 3x2 – 5x + 2 = 0 find the value of
(i) \(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\)
(ii) α – β
(iii) \(\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}\)
Answer:
Comparing with ax2 + bx + c = 0
a = 3, b = -5, c = 2
α and β are the roots of the equation
3x2 – 5x + 2 = 0
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 63
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 64
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 65
(iii) \(\frac{\alpha^{2}}{\beta}+\frac{\beta^{2}}{\alpha}=\frac{\alpha^{3}+\beta^{3}}{\alpha \beta}\)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 66

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 19.
If α and β are the roots of the equation 3x2 – 6x + 1 = 0 from the equation whose roots are
(i) α2 β;β2α
(ii) 2α + β; 2β + a
Answer:
α and β are the roots of 3x2 – 6x + 1 = 0
α + β = \(\frac { 6 }{ 3 } \) = 2
αβ = \(\frac { 1 }{ 3 } \)
(i) Given the roots are α2β and β2α
Sum of the roots = α2β + β2α
= αβ (α + β)
= \(\frac { 1 }{ 3 } \)(2)
= \(\frac { 2 }{ 3 } \)
Product of the roots = (α2β) x (β2α)
= α2β2
= (αβ)3
= (\(\frac { 1 }{ 3 } \))3
= \(\frac { 1 }{ 27 } \)
The quadratic equation is
x2 – (sum of the roots) x + product of the roots = 0
x2 – (\(\frac { 2 }{ 3 } \)) x + \(\frac { 1 }{ 27 } \) = 0
multiply by 27
27x2 – 18x + 1 = 0

(ii) Given the roots are 2α + β; 2 β + α
Sum of the roots = 2α + β + 2 β + α
= 2(α + β) + (α + β)
= 2(2) + 2
= 6
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 67
The quadratic polynomial is
x2 – (sum of the roots) x + product of the roots = 0
x2 – 6x + \(\frac { 25 }{ 3 } \) = 0
3x2 – 18x + 25 = 0

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 20.
Find X and Y if
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 68Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 69
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 70
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 71
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 72

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 21.
Solve for x,y
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 73
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 74
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 75

Question 22.
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 78
Show that A2 – 7A + 1013 = 0
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 79
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 80

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions

Question 23.
Verify that (AB)T = BT AT if
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 81
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 82
From (1) and (2) we get
(AB)= BTAT

Question 24.
Draw the graph of y = x2 and hence solve x2 – 4x – 5 = 0.
Answer:
Given equations are y = x2 and x2 – 4x – 5 = 0
(i) Assume the values of x from – 4 to 5.
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 83
(ii) Plot the points (- 4,16), (- 3, 9), (- 2,4), (-1, 1), (0,0), (1, 1), (2,4), (3, 9), (4,16), (5,25).
(iii) Join the points by a smooth curve.
(iv) Solve the given equations
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 84
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 85
(v) The points of intersection of the line and the parabola are (-1, 1) and (5, 25).
The x-coordinates of the points are -1 and 5.
Thus solution set is {- 1, 5}.

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 86

Question 25.
Draw the graph of y = 2x2 + x – 6 and hence solve 2x2 + x – 10 = 0.
Answer:
Given equations are y = x2 and x2 – 4x – 5 = 0
(i) Assume the values of x from – 4 to 5.
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 832
(ii) Plot the points (- 4, 22), (- 3, 9), (- 2, 0), (-1, -5), (0, -6), (1, -3), (2, 4), (3, 15), (4, 30).
(iii) Join the points by a smooth curve.
(iv) Solve the given equations: Subtract 2x2 + x – 10 = 0
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 841
y = 4 is a straight line parallel to X-axis
(v) The straight line and parabola intersect at point (-2.5, 4) and (2, 4).
The x-coordinates of the points are -2.5 and 2.
The solution set is {- 2.5, 2}.
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Additional Questions 842

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.4

Students can download Maths Chapter 7 Mensuration Ex 7.4 Questions and Answers, Notes, Samacheer Kalvi 9th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 7 Mensuration Ex 7.4

Question 1.
The semi-perimeter of a triangle having sides 15 cm, 20 cm and 25 cm is ……..
(a) 60 cm
(b) 45 cm
(c) 30 cm
(d) 15 cm
Solution:
(c) 30 cm
Hint:
l = 15 cm, b = 20 cm, h = 25 cm
Semi-perimeter = \(\frac{a+b+c}{2}\)
= \(\frac{15+20+25}{2}\)
= 30 cm

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.4

Question 2.
If the sides of a triangle are 3 cm, 4 cm and 5 cm, then the area is ………
(a) 3 cm²
(b) 6 cm²
(c) 9 cm²
(d) 12 cm²
Solution:
(b) 6 cm²
Hint:
a- 3 cm, b = 4 cm, c = 5 cm
s = \(\frac{a+b+c}{2}\)
= \(\frac{3+4+5}{2}\)
= 6 cm
Area of the triangle = \(\sqrt{s(s-a)(s-b)(s-c)}\)
= \(\sqrt{6×3×2×1}\)
= \(\sqrt{36}\)
= 6 cm²

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.4

Question 3.
The perimeter of an equilateral triangle is 30 cm. The area is ……..
(a) 10 √3 cm²
(b) 12 √3 cm²
(c) 15 √3 cm²
(d) 25 √3 cm²
Solution:
(d) 25 √3 cm²
Hint:
Perimeter of an equilateral triangle = 30 cm
3a = 30 cm
a = \(\frac{30}{3}\)
= 10 cm
Area of an equilateral triangle = \(\frac{√3}{4}\) a² sq.units
= \(\frac{√3}{4}\) × 10 × 10
= 25 √3 cm²

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.4

Question 4.
The lateral surface area of a cube of side 12 cm is ……..
(a) 144 cm²
(b) 196 cm²
(c) 576 cm²
(d) 664 cm²
Solution:
(c) 576 cm²
Hint:
Side of a cube (a) = 12 cm
L.S.A. of a cube = 4a² sq.units
= 4 × 12 × 12 cm²
= 576 cm²

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.4

Question 5.
If the lateral surface area of a cube is 600 cm², then the total surface area is ………
(a) 150 cm²
(b) 400 cm²
(c) 900 cm²
(d) 1350 cm²
Solution:
(c) 900 cm²
Hint:
L.S.A. of a cube = 600 cm²
4a² = 600
a² = \(\frac{600}{4}\)
= 150
Total surface area of a cube = 6a² sq.units
= 6 × 150 cm²
= 900 cm²

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.4

Question 6.
The total surface area of a cuboid with dimension 10 cm × 6 cm × 5 cm is ………
(a) 280 cm²
(b) 300 cm²
(c) 360 cm²
(d) 600 cm²
Solution:
(a) 280 cm²
Hint:
T.S.A. of a cuboid = 2(lb + bh + lh) sq.units
= 2(10 × 6 + 6 × 5 + 10 × 5) cm²
= 2(60 + 30 + 50) cm²
= 2 × 140 cm²
= 280 cm²

Question 7.
If the ratio of the sides of two cubes are 2 : 3, then ratio of their surface areas will be ………
(a) 4 : 6
(b) 4 : 9
(c) 6 : 9
(d) 16 : 36
Solution:
(b) 4 : 9
Hint:
Ratio of the surface area of cubes = 4a12 : 4a22
= a12 : a22
= 4² : 9²
= 4 : 9

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.4

Question 8.
The volume of a cuboid is 660 cm and the area of the base is 33 cm². Its height is ………
(a) 10 cm
(b) 12 cm
(c) 20 cm
(d) 22 cm
Solution:
(c) 20 cm
Hint:
Volume of a cuboid = 660 cm³
l × b × h = 660
33 × h = 660 (Area of the base = l × b)
h = \(\frac{660}{33}\)
= 20 cm

Question 9.
The capacity of a water tank of dimensions 10 m × 5 m × 1.5 m is ………
(a) 75 litres
(b) 750 litres
(c) 7500 litres
(d) 75000 litres
Solution:
(d) 75000 litres
Hint:
The capacity of a tank = l × b × h cu.units
= (10 × 5 × 1.5) m³
= 75 m³
= 75 × 1000 litres [1m³ = 1000 lit]
= 75000 litres

Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.4

Question 10.
The number of bricks each measuring 50 cm × 30 cm × 20 cm that will be required to build a wall whose dimensions are 5 m x 3 m x 2 m is ………
Solution:
(a) 1000
(b) 2000
(c) 3000
(d) 5000
Solution:
(a) 1000
Hint:
Volume of one brick = 50 × 30 × 20 cm³
Volume of the wall = l × b × h
[l = 5m = 500 cm]
[b = 3m = 300 cm]
[h = 2m = 200 cm]
= 500 × 300 × 200 cm³
No. of bricks
Samacheer Kalvi 9th Maths Guide Chapter 7 Mensuration Ex 7.4 1
= 10 × 10 × 10
= 1000 bricks

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2

Students can download Maths Chapter 4 Geometry Ex 4.2 Questions and Answers, Notes, Samacheer Kalvi 10th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 10th Maths Solutions Chapter 4 Geometry Ex 4.2

Question 1.
In ∆ABC, D and E are points on the sides AB and AC respectively such that DE || BC
(i) If \(\frac { AD }{ DB } \) = \(\frac { 3 }{ 4 } \) and AC = 15 cm find AE.
(ii) If AD = 8x – 7 , DB = 5x – 3 , AE = 4x – 3 and EC = 3x – 1, find the value of x.
Solution:
(i) Let AE be x
∴ EC = 15 – x
In ∆ABC we have DE || BC
By Basic proportionality theorem, we have
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 1
\(\frac { AD }{ DB } \) = \(\frac { AE }{ EC } \)
\(\frac { 3 }{ 4 } \) = \(\frac { x }{ 15-x } \)
4x = 3 (15 – x)
4x = 45 – 3x
7x = 45 ⇒ x = \(\frac { 45 }{ 7 } \) = 6.43
The value of x = 6.43

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2

(ii) Given AD = 8x – 7; BD = 5x – 3; AE = 4x – 3; EC = 3x – 1
In ∆ABC we have DE || BC
By Basic proportionality theorem
\(\frac { AD }{ DB } \) = \(\frac { AE }{ EC } \)
\(\frac { 8x-7 }{ 5x-3 } \) = \(\frac { 4x-3 }{ 3x-1 } \)
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 2
(8x – 7) (3x – 1) = (4x – 3) (5x – 3)
24x2 – 8x – 21x + 7 = 20x2 – 12x – 15x + 9
24x2 – 20x2 – 29x + 27x + 7 – 9 = 0
4x2 – 2x – 2 = 0
2x2 – x – 1 = 0 (Divided by 2)
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 3
2x2 – 2x + x – 1 = 0
2x(x -1) + 1 (x – 1) = 0
(x – 1) (2x + 1) = 0
x – 1 = 0 or 2x + 1 = 0
x = 1 or 2x = -1 ⇒ x = – \(\frac { 1 }{ 2 } \) (Negative value will be omitted)
The value of x = 1

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2

Question 2.
ABCD is a trapezium in which AB || DC and P,Q are points on AD and BC respectively, such that PQ || DC if PD = 18 cm, BQ
Solution:
Join AC intersecting PQ at S.
Let AP be x
∴ AD = x + 18
In the ∆ABC, QS || AB
By basic proportionality theorem.
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 4
\(\frac { AS }{ SC } \) = \(\frac { BQ }{ QC } \)
\(\frac { AS }{ SC } \) = \(\frac { 35 }{ 15 } \) ………(1)
In the ∆ACD; PS || DC
By basic proportionality theorem.
\(\frac { AS }{ SC } \) = \(\frac { AP }{ PD } \)
\(\frac { AS }{ SC } \) = \(\frac { x }{ 18 } \) ………..(2)
From (1) and (2) we get
\(\frac { 35 }{ 15 } \) = \(\frac { x }{ 18 } \)
15x = 35 × 18 ⇒ x = \(\frac{35 \times 18}{15}\) = 42
AD = AP + PD
= 42 + 18 = 60
The value of AD = 60 cm

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2

Question 3.
In ∆ABC, D and E are points on the sides AB and AC respectively. For each of the following cases show that DE || BC.
(i) AB = 12 cm, AD = 8 cm, AE = 12 cm and AC = 18 cm.
(ii) AB = 5.6 cm, AD = 1.4 cm, AC = 7.2 cm and AE = 1.8 cm.
Solution:
(i) Here AB = 12 cm; BD =12 – 8 = 4 cm; AE =12 cm; EC = 18 – 12 = 6 cm
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 5
∴ \(\frac { AD }{ DB } \) = \(\frac { 8 }{ 4 } \) = 2
\(\frac { AE }{ EC } \) = \(\frac { 12 }{ 6 } \) = 2
\(\frac { AD }{ DB } \) = \(\frac { AE }{ EC } \)
By converse of basic proportionality theorem DE || BC

(ii) Here AB = 5.6 cm; AD = 1.4 cm;
BD = AB – AD
= 5.6 – 1.4 = 4.2
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 6
AC = 7.2 cm; AE = 1.8 cm
EC = AC – AE
= 7.2 – 1.8
EC = 5.4 cm
\(\frac { AD }{ DB } \) = \(\frac { 1.4 }{ 4.2 } \) = \(\frac { 1 }{ 3 } \)
\(\frac { AE }{ EC } \) = \(\frac { 1.8 }{ 5.4 } \) = \(\frac { 1 }{ 3 } \)
\(\frac { AE }{ EC } \) = \(\frac { AD }{ DB } \)
By converse of basic proportionality theorem DE || BC

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2

Question 4.
In fig. if PQ || BC and BC and PR || CD prove that
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 7
(i) \(\frac { AR }{ AD } \) = \(\frac { AQ }{ AB } \)
(ii) \(\frac { QB }{ AQ } \) = \(\frac { DR }{ AR } \)
Solution:
(i) In ∆ABC, We have PQ || BC
By basic proportionality theorem
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 8
\(\frac { AQ }{ AB } \) = \(\frac { AP }{ AC } \) ……(1)
In ∆ACD, We have PR || CD
basic proportionality theorem
\(\frac { AP }{ AC } \) = \(\frac { AR }{ AD } \) ………..(2)
From (1) and (2) we get
\(\frac { AQ }{ AB } \) = \(\frac { AR }{ AD } \) (or) \(\frac { AR }{ AD } \) = \(\frac { AQ }{ AB } \)

(ii) In ∆ABC, PQ || BC (Given)
By basic proportionality theorem
\(\frac { AP }{ PC } \) = \(\frac { AQ }{ QB } \) ………..(1)
In ∆ADC, PR || CD (Given)
By basic proportionality theorem
\(\frac { AP }{ PC } \) = \(\frac { AR }{ RD } \) ………(2)
From (1) and (2) we get
\(\frac { AQ }{ QB } \) = \(\frac { AP }{ RD } \) (or) \(\frac { QB }{ AQ } \) = \(\frac { RD }{ AR } \)

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2

Question 5.
Rhombus PQRB is inscribed in ∆ABC such that ∠B is one of its angle. P, Q and R lie on AB, AC and BC respectively. If AB = 12 cm and BC = 6 cm, find the sides PQ, RB of the rhombus.
Solution:
Let the side of the rhombus be “x”. Since PQRB is a Rhombus PQ || BC
By basic proportionality theorem
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 9
\(\frac { AP }{ AB } \) = \(\frac { PQ }{ BC } \) ⇒ \(\frac { 12-x }{ BC } \) = \(\frac { x }{ 6 } \)
12x = 6 (12 – x)
12x = 72 – 6x
12x + 6x = 72
18x = 72 ⇒ x = \(\frac { 72 }{ 18 } \) = 4
Side of a rhombus = 4 cm
PQ = RB = 4 cm

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2

Question 6.
In trapezium ABCD, AB || DC , E and F are points on non-parallel sides AD and BC respectively, such that EF || AB.
Show that = \(\frac { AE }{ ED } \) = \(\frac { BF }{ FC } \)
Solution:
Given: ABCD is a trapezium AB || DC
E and F are the points on the side AD and BC
EF || AB
To Prove: \(\frac { AE }{ ED } \) = \(\frac { BF }{ FC } \)
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 10
Construction: Join AC intersecting AC at P
Proof:
In ∆ABC, PF || AB (Given)
By basic proportionality theorem
\(\frac { AP }{ PC } \) = \(\frac { BF }{ FC } \) ………..(1)
In the ∆ACD, PE || CD (Given)
By basic Proportionality theorem
\(\frac { AP }{ PC } \) = \(\frac { AE }{ ED } \) …………..(2)
From (1) and (2) we get
\(\frac { AE }{ ED } \) = \(\frac { BF }{ FC } \)

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2

Question 7.
In figure DE || BC and CD || EE Prove that AD2 = AB × AF.
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 11
Solution:
Given: In ∆ABC, DE || BC and CD || EF
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 12
To Prove: AD2 = AB × AF
Proof: In ∆ABC, DE || BC (Given)
By basic proportionality theorem
\(\frac { AB }{ AD } \) = \(\frac { AC }{ AE } \) ……….. (1)
In ∆ADC; FE || DC (Given)
By basic Proportionality theorem
\(\frac { AD }{ AF } \) = \(\frac { AC }{ AE } \) ……..(2)
From (1) and (2) we get
\(\frac { AB }{ AD } \) = \(\frac { AD }{ AF } \)
AD2 = AB × AF
Hence it is proved

Question 8.
In ∆ABC, AD is the bisector of ∠A meeting side BC at D, if AB = 10 cm, AC = 14 cm and BC = 6 cm, find BD and DC.
Solution:
In ∆AABC AD is the internal bisector of ∠A
Given BC = 6 cm
Let BD = x ∴ DC = 6 – x cm
By Angle bisector theorem
\(\frac { BD }{ DC } \) = \(\frac { AB }{ AC } \)
\(\frac { x }{ 6-x } \) = \(\frac { 10 }{ 14 } \)
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 13
14x = 60 – 10x
24x = 60
x = \(\frac { 60 }{ 24 } \) = \(\frac { 10 }{ 4 } \) = 2.5
BD = 2.5 cm;
DC = 6 – x ⇒ 2.5 = 3.5 cm

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2

Question 9.
Check whether AD is bisector of ∠A of ∆ABC in each of the following,
(i) AB = 5 cm, AC = 10 cm, BD = 1.5 cm and CD = 3.5 cm.
(ii) AB = 4 cm, AC 6 cm, BD = 1.6 cm and CD = 2.4 cm.
Solution:
(i) In ∆ABC, AB = 5 cm, AC = 10 cm, BD = 1.5 cm, CD = 3.5 cm
\(\frac { BD }{ DC } \) = \(\frac { 1.5 }{ 3.5 } \) = \(\frac { 15 }{ 35 } \) = \(\frac { 3 }{ 7 } \)
\(\frac { AB }{ AC } \) = \(\frac { 5 }{ 10 } \) = \(\frac { 1 }{ 2 } \)
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 14
\(\frac { BD }{ DC } \) ≠ \(\frac { AB }{ AC } \)
∴ AD is not a bisector of ∠A.

(ii) In ∆ABC, AB = 4 cm, AC = 6 cm, BD = 1.6 cm, CD = 2.4 cm
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 15
\(\frac { BD }{ DC } \) = \(\frac { 1.6 }{ 2.4 } \) = \(\frac { 16 }{ 24 } \) = \(\frac { 2 }{ 3 } \)
\(\frac { AB }{ AC } \) = \(\frac { 4 }{ 6 } \) = \(\frac { 2 }{ 3 } \)
∴ \(\frac { BD }{ DC } \) = \(\frac { AB }{ AC } \)
By angle bisector theorem; AD is the internal bisector of ∠A

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2

Question 10.
In figure ∠QPR = 90°, PS is its bisector.
If ST ⊥ PR, prove that ST × (PQ + PR) = PQ × PR.
Solution:
Given: ∠QPR = 90°; PS is the bisector of ∠P. ST ⊥ ∠PR
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 16
To prove: ST × (PQ + PR) = PQ × PR
Proof: In ∆ PQR, PS is the bisector of ∠P.
∴ \(\frac { PQ }{ QR } \) = \(\frac { QS }{ SR } \)
Adding (1) on both side
1 + \(\frac { PQ }{ QR } \) = 1 + \(\frac { QS }{ SR } \)
\(\frac { PR+PQ }{ PR } \) = \(\frac { SR+QS }{ SR } \)
\(\frac { PQ+PR }{ PR } \) = \(\frac { QR }{ SR } \) ……….(1)
In ∆ RST And ∆ RQP
∠SRT = ∠QRP = ∠R (Common)
∴ ∠QRP = ∠STR = 90°
(By AA similarity) ∆ RST ~ RQP
\(\frac { SR }{ QR } \) = \(\frac { ST }{ PQ } \)
\(\frac { QR }{ SR } \) = \(\frac { PQ }{ ST } \) ……..(2)
From (1) and (2) we get
\(\frac { PQ+PR }{ PR } \) = \(\frac { PQ }{ ST } \)
ST (PQ + PR) = PQ × PR

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2

Question 11.
ABCD is a quadrilateral in which AB = AD, the bisector of ∠BAC and ∠CAD intersect the sides BC and CD at the points E and F respectively. Prove that EF || BD.
Solution:
ABCD is a quadrilateral. AB = AD.
AE and AF are the internal bisector of ∠BAC and ∠DAC.
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 17
To prove: EF || BD.
Construction: Join EF and BD
Proof: In ∆ ABC, AE is the internal bisector of ∠BAC.
By Angle bisector theorem, we have,
∴ \(\frac { AB }{ AC } \) = \(\frac { BE }{ EC } \) ………(1)
In ∆ ADC, AF is the internal bisector of ∠DAC
By Angle bisector theorem, we have,
\(\frac { AD }{ AC } \) = \(\frac { DF }{ FC } \)
∴ \(\frac { AB }{ AC } \) = \(\frac { DF }{ FC } \) (AB = AD given) ………(2)
From (1) and (2), we get,
\(\frac { BE }{ EC } \) = \(\frac { DF }{ FC } \)
Hence in ∆ BCD,
BD || EF (by converse of BPT)

Question 12.
Construct a ∆PQR which the base PQ = 4.5 cm, R = 35° and the median from R to RG is 6 cm.
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 18

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 19
Steps of construction

  1. Draw a line segment PQ = 4.5 cm
  2. At P, draw PE such that ∠QPE = 60°
  3. At P, draw PF such that ∠EPF = 90°
  4. Draw the perpendicular bisect to PQ, which intersects PF at O and PQ at G.
  5. With O as centre and OP as radius draw a circle.
  6. From G mark arcs of radius 5.8 cm on the circle. Mark them at R and S
  7. Join PR and RQ. PQR is the required triangle.

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2

Question 13.
Construct a ∆PQR in which QR = 5 cm, ∠P = 40° and the median PG from P to QR is 4.4 cm. Find the length of the altitude from P to QR.
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 20
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 21
Steps of construction

  1. Draw a line segment RQ = 5 cm.
  2. At R draw RE such that ∠QRE = 40°
  3. At R, draw RF such that ∠ERF = 90°
  4. Draw the perpendicular bisector to RQ, which intersects RF at O and RQ at G.
  5. With O as centre and OP as radius draw a circle.
  6. From G mark arcs of radius 4.4 cm on the circle. Mark them as P and S.
  7. Join PR and PQ. Then ∆PQR is the required triangle.
  8. From P draw a line PN which is perpendicular to RQ it meets at N.
  9. Measure the altitude PN.
    PN = 2.2 cm.

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2

Question 14.
Construct a ∆PQR such that QR = 6.5 cm, ∠P = 60° and the altitude from P to QR is of length 4.5 cm.
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 22
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 23
Steps of construction

  1. Draw a line segment QR = 6.5 cm.
  2. At Q draw QE such that ∠RQE = 60°.
  3. At Q, draw QF such that ∠EQF = 90°.
  4. Draw the perpendicular of QR which intersects QF at O and QR at G.
  5. With O as centre and OQ as radius draw a circle.
  6. X Y intersects QR at G. On X Y, from G mark an arc at M. Such that GM = 4.5 cm.
  7. Draw AB through M which is parallel to QR.
  8. AB Meets the circle at P and S.
  9. join QP and RP.
    PQR is the required triangle.

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2

Question 15.
Construct a ∆ABC such that AB = 5.5 cm, ∠C = 25° and the altitude from C to AB is
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 24
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 25
Steps of construction

  1. Draw a line segment AB = 5.5 cm.
  2. At A draw AE such that ∠BAE = 25°.
  3. At A draw AF such that ∠EAF = 90°.
  4. Draw the perpendicular bisector of AB which intersects AF at O and AB at G.
  5. With O as centre and OB as radius draw a circle.
  6. X Y intersects AB at G. On X Y, from G mark an arc at M. Such that GM = 4 cm.
  7. Through M draw a line parallel to AB intersect the circle at C and D.
  8. Join AC and BC.
    ABC is the required triangle.

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2

Question 16.
Draw a triangle ABC of base BC = 5.6 cm, ∠A = 40° and the bisector of ∠A meets BC at D such that CD = 4 cm.
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 26
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 27
Steps of construction

  1. Draw a line segment BC = 5.6 cm.
  2. At B draw BE such that ∠CBE = 40°.
  3. At B draw BF such that ∠EBF = 90°.
  4. Draw the perpendicular bisector to BC which intersects BF at O and BC at G.
  5. With O as centre and OB as radius draw a circle.
  6. From C mark an arc of 4 cm on CB at D.
  7. The perpendicular bisector intersects the circle at I. Joint ID.
  8. ID produced meets the circle at A. Now Join AB and AC.
    This ABC is the required triangle.

Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2

Question 17.
Draw ∆PQR such that PQ = 6.8 cm, vertical angle is 50° and the bisector of the vertical angle meets the base at D where PD = 5.2 cm
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 28
Samacheer Kalvi 10th Maths Guide Chapter 4 Geometry Ex 4.2 29
Steps of construction

  1. Draw a line segment PQ = 6.8 cm.
  2. At P draw PE such that ∠QPE = 50°.
  3. At P draw PF such that ∠EPF = 90°.
  4. Draw the perpendicular bisector to PQ which intersects PF at O and PQ at G.
  5. With O as centre and OP as radius draw a circle.
  6. From P mark an arc of 5.2 cm on PQ at D.
  7. The perpendicular bisector intersects the circle at I. Join ID.
  8. ID produced meets the circle at A. Now Joint PR and QR. This PQR is the required triangle.