Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.14

Students can download Maths Chapter 3 Algebra Ex 3.14 Questions and Answers, Notes, Samacheer Kalvi 10th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 10th Maths Solutions Chapter 3 Algebra Ex 3.14

Question 1.
Write each of the following expression in terms of α + β and αβ
(i) \(\frac{\alpha}{3 \beta}+\frac{\beta}{3 \alpha}\)
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.14 1

(ii) \(\frac{1}{\alpha^{2} \beta}+\frac{1}{\beta^{2} \alpha}\)
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.14 2

(iii) (3α – 1) (3β – 1)
Answer:
(3α – 1) (3β – 1) = 9αc – 3α – 3β + 1
= 9αβ – 3(α + β) + 1

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.14

(iv) \(\frac{\alpha+3}{\beta}+\frac{\beta+3}{\alpha}\)
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.14 3

Question 2.
The roots of the equation 2x2 – 7x + 5 = 0 are a and p. Find the value of [without solving the equation]
\(\text { (i) } \frac{1}{\alpha}+\frac{1}{\beta}\)
Answer:
α and α are the roots of the equation 2x2 – 7x + 5 = 0
α + β = \(\frac { 7 }{ 2 } \) ; αβ = \(\frac { 5 }{ 2 } \)
(i) \(\frac{1}{\alpha}+\frac{1}{\beta}\) = \(\frac{\beta+\alpha}{\alpha \beta}\)
= \(\frac { 7 }{ 2 } \) + \(\frac { 5 }{ 2 } \) = \(\frac { 7 }{ 2 } \) × \(\frac { 2 }{ 5 } \) = \(\frac { 7 }{ 5 } \)

(ii) \(\frac{\alpha}{\beta}+\frac{\beta}{\alpha}\)
Answer
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.14 4
= (\(\frac { 7 }{ 2 } \))2 – 2 × \(\frac { 5 }{ 2 } \) ÷ \(\frac { 5 }{ 2 } \)
= \(\frac { 49 }{ 4 } \) – 5 ÷ \(\frac { 5 }{ 2 } \) = \(\frac { 49-20 }{ 4 } \) ÷ \(\frac { 5 }{ 2 } \)
= \(\frac { 29 }{ 4 } \) × \(\frac { 2 }{ 5 } \) = \(\frac { 29 }{ 10 } \)

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.14

(iii) \(\frac{\alpha+2}{\beta+2}+\frac{\beta+2}{\alpha+2}\)
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.14 5

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.14

Question 3.
The roots of the equation x2 + 6x – 4 = 0 are a, p. Find the quadratic equation whose roots are
(i) α2 and β2
Answer:
α and β are the roots of x2 + 6x – 4 = 0
α + β = -6; αβ = -4

(i) Sum of the roots = α2 + β2
= (α + β)2 – 2αβ
= 36 – 2 – (4) = 36 + 8
= 44
Product of the roots = α2 + β2
= (αβ)2
= (-4)2
= 16
The Quadratic equation is
x2 – (sum of the roots) x + Product of the roots = 0
x2 – (44)x + 16 = 0
x2 – 44x + 16 = 0

(ii) \(\frac{2}{\alpha}\) and \(\frac{2}{\beta}\)
Answer:
Sum of the roots = \(\frac{2}{\alpha}\) + \(\frac{2}{\beta}\)
= \(\frac{2 \beta+2 \alpha}{\alpha \beta}=\frac{2(\alpha+\beta)}{\alpha \beta}\)
= \(\frac{2(-6)}{-4}=\frac{-12}{-4}=3\)
Product of the roots = \(\frac{2}{\alpha} \times \frac{2}{\beta}=\frac{4}{\alpha \beta}\)
= \(\frac { 4 }{ -4 } \) = -1
The Quadratic equation is
x2 – (sum of the roots) x + Product of the roots = 0
x2 – 3x – 1 = 0

(iii) α2β and β2α
Answer:
Sum of the roots = α2β + β2α
= αβ (α + β)
= -4 (-6) = 24
Product of the roots = α2β × β2α
= α2β3 = (αβ)3
= (-4)3 = -64
The Quadratic equation is
x2 – (Sum of the roots) x + Product of the roots = 0
x2 – 24x – 64 = 0

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.14

Question 4.
If α, β are the roots of 7x2 + ax + 2 = 0 and if β – α = \(\frac { 13 }{ 7 } \) Find the values of a.
Answer:
α and β are the roots of 7x2 + ax + 2 = 0
α + β = \(\frac { -a }{ 7 } \); αβ = \(\frac { 2 }{ 7 } \)
Given β – α = – \(\frac { 13 }{ 7 } \) ⇒ α – β = \(\frac { 13 }{ 7 } \)
Squaring on both sides
(α – β)2 = (\(\frac { 13 }{ 7 } \))2
α2 + β2 = 2αβ = \(\frac { 169 }{ 49 } \)
(- \(\frac { a }{ 7 } \))2 -4(\(\frac { 2 }{ 7 } \)) = \(\frac { 169 }{ 49 } \) ⇒ \(\frac{a^{2}}{49}-\frac{8}{7}=\frac{169}{49}\)
\(\frac{a^{2}}{49}\) = \(\frac { 225 }{ 49 } \) ⇒ a2 = \(\frac{225 \times 49}{49}\)
a2 = 225 ⇒ a = ± \(\sqrt { 225 }\) = ± 15
The value of a = 15 or – 15

Question 5.
If one root of the equation 2y2, – ay + 64 = 0 is twice the other then find the values of a.
Answer:
Let the roots be α and 2α
Here a = 2, b = – a, c = 64
Sum of the roots = – \(\frac { b }{ a } \)
α + 2α = \(\frac { a }{ 2 } \)
3α = \(\frac { a }{ 2 } \)
a = 6α …….(1)
Product of the roots = \(\frac { c }{ a } \)
α × 2α = \(\frac { 64 }{ 2 } \) = 2α2 = 32
α2 = \(\frac { 32 }{ 2 } \) = 16
α = \(\sqrt { 16 }\) = ± 4
Substitute the value of a in (1)
When α = 4
a = 6(4)
a = 24
The Value of a is 24 or -24
When α = -4
a = 6(-4)
a = -24

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.14

Question 6.
If one root of the equation 3x2 + kx + 81 = 0 (having real roots) is the square of the other then find k.
Answer:
Let α and α2 be the root of the equation 3x2 + kx + 81
Here a = 3, b = k, c = 81
Sum of the roots = – \(\frac { b }{ a } \) = – \(\frac { k }{ 3 } \)
α + α2 = –\(\frac { k }{ 3 } \)
3α + 3α2 = -k ……..(1)
Product of the roots = \(\frac { c }{ a } \) = \(\frac { 81 }{ 3 } \) = 27
α × α2 = 27
α3 = 27 ⇒ α3 = 33
α = 3
Substitute the value of α = 3 in (1)
3(3) + 3(3)2 = -k
9 + 27 = -k ⇒ 36 = – k
∴ k = -36
The value of k = -36

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5

Students can download Maths Chapter 3 Algebra Ex 3.5 Questions and Answers, Notes, Samacheer Kalvi 10th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 10th Maths Solutions Chapter 3 Algebra Ex 3.5

Question 1.
Simplify
(i) \(\frac{4 x^{2} y}{2 z^{2}} \times \frac{6 x z^{3}}{20 y^{4}}\)
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 1

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5

(ii) \(\frac{p^{2}-10 p+21}{p-7} \times \frac{p^{2}+p-12}{(p-3)^{2}}\)
Answer:
P2 – 10p + 21 = (p – 7) (p – 3)
p2 + p – 12 = (p + 4) (p – 3)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 2
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 3
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 4

(iii) \(\frac{5 t^{3}}{4 t-8} \times \frac{6 t-12}{10 t}\)
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 5

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5

Question 2.
Simplify
(i) \(\frac{x+4}{3 x+4 y} \times \frac{9 x^{2}-16 y^{2}}{2 x^{2}+3 x-20}\)
Answer:
9x2 – 16y2 = (3x)2 – (4y)2
= (3x + 4y) (3x – 4y)
2x2 + 3x – 20 = 2x2 + 8x – 5x – 20
= 2x (x + 4) – 5 (x + 4)
= (x + 4) (2x – 5)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 6

(ii) \(\frac{x^{3}-y^{3}}{3 x^{2}+9 x y+6 y^{2}} \times \frac{x^{2}+2 x y+y^{2}}{x^{2}-y^{2}}\)
Answer:
x3 – y3 = (x – y) (x2 + xy + y2)
x2 + 2xy + y2 = (x + y) (x + y)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 7
3x2 + 9xy + 6y2 = 3(x2 + 3xy + 2y2)
= 3 (x + 2y) (x + y)
(x2 – y2) = (x + y) (x – y)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 8

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5

Question 3.
Simplify
(i) \(\frac{2 a^{2}+5 a+3}{2 a^{2}+7 a+6} \div \frac{a^{2}+6 a+5}{-5 a^{2}-35 a-50}\)
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 9
2 a2 + 5a + 3a + 3 = 2a2 + 2a + 3a + 3
= 2a(a + 1) + 3 (a + 1)
= (a + 1) (2a + 3)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 10
2a2 + 7a + 6 = 2a2 + 3a + 4a + 6
= a(2a + 3) + 2 (2a + 3)
= (2a + 3) (a + 2)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 11
a2 + 6a + 5 = (a + 5) + (a + 1)
-5a2 – 35a – 50 = -5(a2 + 7a + 10)
= -5(a + 5)(a + 2)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 12
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 13

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5

(ii) \(\frac{b^{2}+3 b-28}{b^{2}+4 b+4}+\frac{b^{2}-49}{b^{2}-5 b-14}\)
Solution:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 14
b2 + 3b – 28 = (b + 7) (b – 4)
b2 + 4b + 4 = (b + 2) (b + 2)
b2 – 49 = b2 – 72
= (b + 7) (b – 7)
b2 – 5b – 14 = (b – 7) (b + 2)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 15
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 16
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 17

(iii) \(\frac{x+2}{4 y}+\frac{x^{2}-x-6}{12 y^{2}}\)
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 18
x2 – x – 6 = (x – 3) (x + 2)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 19

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5

(iv) \(\frac{12 t^{2}-22 t+8}{3 t} \div \frac{3 t^{2}+2 t-8}{2 t^{2}+4 t}\)
Answer:
12t2 – 22t + 8 = 2(6t2 – 11t + 4)
= 2[6t2 – 8t – 3t + 4]
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 20
= 2[2t (3t – 4) – 1 (3t – 4)]
= 2(3t – 4) (2t – 1)
3t2 + 2t – 8 = 3t2 + 6t – 4t – 8
= 3t(t + 2) – 4 (t + 2)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 21
= (t + 2) (3t – 4)
2t2 + 4t = 2t(t + 2)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 22

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5
Question 4.
If x = \(\frac{a^{2}+3 a-4}{3 a^{2}-3}\) and y = \(\frac{a^{2}+2 a-8}{2 a^{2}-2 a-4}\) find the value of x2y-2
Answer:
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 25
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 23
The value of x2 y-2 = \(\frac{x^{2}}{y^{2}}\) = (\(\frac { x }{ y } \))2
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 27

Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5

Question 5.
If a polynomial p(x) = x2 – 5x – 14 when divided by another polynomial q(x) gets reduced to \(\frac { x-7 }{ x+2 } \) find q(x).
Answer:
p(x) = x2 – 5x – 14
= (x – 7) (x + 2)
Samacheer Kalvi 10th Maths Guide Chapter 3 Algebra Ex 3.5 28
By the given data
\(\frac { p(x) }{ q(x) } \) = \(\frac { (x-7) }{ x+2 } \)
\(\frac{(x-7)(x+2)}{q(x)}\) = \(\frac { (x-7) }{ x+2 } \)
q(x) × (x – 7) = (x – 7) (x + 2) (x + 2)
q(x) = \(\frac{(x-7)(x+2)(x+2)}{(x-7)}\)
= (x + 2)2
q(x) = x2 + 4x + 4

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.13

Students can download Maths Chapter 3 Algebra Ex 3.13 Questions and Answers, Notes, Samacheer Kalvi 9th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 3 Algebra Ex 3.13

Question 1.
Solve by cross-multiplication method.
(i) 8x – 3y = 12; 5x = 2y + 7
Solution:
8x – 3y – 12 = 0 → (1)
5x – 2y – 7 = 0 → (2)
Use the coefficients for cross multiplication
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.13 1
\(\frac{x}{-3}\) = -1 ⇒ x = 3
\(\frac{y}{-4}\) = -1 ⇒ y = 4
∴ The value of x = 3 and y = 4

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.13

(ii) 6x + 7y – 11 = 0; 5x + 2y = 13
Solution:
6x + 7y – 11 = 0 → (1)
5x + 2y = 13 → (2)
Use the coefficient for cross multiplication
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.13 2
-23x = -69
∴ 23x = 69
x= \(\frac{69}{23}\)
= 3
\(\frac{y}{23}\) = \(\frac{1}{-23}\)
-23y = 23
23y = -23
y = –\(\frac{23}{23}\)
y = -1
∴ The value of x = 3 and y = -1

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.13

(iii) \(\frac{2}{x}\) + \(\frac{3}{y}\) =5; \(\frac{3}{x}\) – \(\frac{1}{y}\) + 9 = 0
Solution:
\(\frac{1}{x}\) = a; \(\frac{1}{y}\) = b
2a + 3b – 5 = 0 → (1)
3a – b + 9 = 0 → (2)
Using the coefficients for cross multiplication
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.13 3
-11b = -33
11b = 33
b = \(\frac{33}{11}\) = 3
But \(\frac{1}{x}\) = a ⇒ \(\frac{1}{x}\) = -2
-2x = 1 ⇒ 2x = -1
x = –\(\frac{1}{2}\)
but \(\frac{1}{y}\) = b
\(\frac{1}{y}\) = 3 ⇒ 3y = 1
y = \(\frac{1}{3}\)
∴ The value of x = –\(\frac{1}{2}\) and y = \(\frac{1}{3}\)

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.13

Question 2.
Akshaya has 2 rupee coins and 5 rupee coins in her purse. If in all she has 80 coins totalling Rs 220, how many coins of each kind does she have.
Solution:
Let the number of 2 rupee coins be “x” and the number of 5 rupee coins be “y”.
By the given first condition
x + y = 80 → (1)
Again by the given second condition
2x + 5y = 220 → (2)
x + y – 80 = 0 → (3)
2x + 5y – 220 = 0 → (4)
Using the coefficients for cross multiplication
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.13 4
\(\frac{x}{180}\) = \(\frac{1}{3}\)
3x = 180
x = \(\frac{180}{3}\)
= 60
But \(\frac{y}{60}\) = \(\frac{1}{3}\)
3y = 60
y = \(\frac{6}{30}\)
= 20
Number of 2 rupee coins = 60
Number of 5 rupee coins = 20

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.13

Question 3.
It takes 24 hours to fill a swimming pool using two pipes. If the pipe of larger diameter is used for 8 hours and the pipe of the smaller diameter is used for 18 hours. Only half of the pool is filled. How long would each pipe take to fill the swimming pool.
Solution:
Let the time taken by the larger diameter pipe be “x” hours and the time taken by the smaller diameter pipe be “y” hours.
By the given first condition
\(\frac{1}{x}\) + \(\frac{1}{y}\) = \(\frac{1}{24}\) → (1)
Also
In 8 hours the large pipe fill \(\frac{8}{x}\)
In 18 hours the smaller pipe fill \(\frac{18}{y}\)
By the given second condition ( \(\frac{1}{2}\) of the tank)
\(\frac{8}{x}\) + \(\frac{18}{y}\) = \(\frac{1}{2}\) → (2)
Solve (1) and (2) we get
Let \(\frac{1}{x}\) = a; \(\frac{1}{y}\) = b
a + b = \(\frac{1}{24}\)
Multiply by 24
24a + 24b = 1
24a + 24b – 1 = 0 → (3)
8a + 18b = \(\frac{1}{2}\)
Multiply by 2
16a + 36b = 1
16a + 36b – 1 = 0 → (4)
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.13 5
x = 40
\(\frac{1}{y}\) = b ⇒ \(\frac{1}{y}\) = \(\frac{1}{60}\)
y = 60
To fill the remaining half of the pool.
Time taken by larger pipe = \(\frac{1}{2}\) × 40 = 20 hours
Time taken by smaller pipe = \(\frac{1}{2}\) × 60 = 30 hours

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.13

Samacheer Kalvi 9th Maths Guide Chapter 5 Coordinate Geometry Ex 5.1

Students can download Maths Chapter 5 Coordinate Geometry Ex 5.1 Questions and Answers, Notes, Samacheer Kalvi 9th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 5 Coordinate Geometry Ex 5.1

Question 1.
Plot the following points in the coordinate system and identify the quadrants P(-7, 6), Q(7, -2), R(-6, -7), S(3, 5) and T(3, 9)
Solution:
Samacheer Kalvi 9th Maths Guide Chapter 5 Coordinate Geometry Ex 5.1 1
(i) P(-7, 6) lies in the II quadrant because the x-coordinate is negative and y-coordinate is positive.
(ii) Q(7, -2) lies in the IV quadrant because the x-coordinate is positive and y-coordinate is negative.
(iii) R(-6, -7) lies in the III quadrant because the x-coordinate is negative and y-coordinate is negative.
(iv) S(3, 5) lies in the I quadrant because the x-coordinate is positive and y-coordinate is also positive.
(v) T(3, 9) lies in the I quadrant because the x-coordinate is positive and y-coordinate is also positive.

Samacheer Kalvi 9th Maths Guide Chapter 5 Coordinate Geometry Ex 5.1

Question 2.
Write down the abscissa and ordinate of the following.
(i) P
(ii) Q
(iii) R
(iv) S
Samacheer Kalvi 9th Maths Guide Chapter 5 Coordinate Geometry Ex 5.1 2
Solution:
(i) P is (-4, 4) [-4 is abscissa and 4 is ordinate]
(ii) Q is (3, 3) [3 is abscissa and 3 is ordinate]
(iii) R is (4, -2) [4 is abscissa and -2 is ordinate]
(iv) S is (-5, -3) [-5 is abscissa and -3 is ordinate]

Samacheer Kalvi 9th Maths Guide Chapter 5 Coordinate Geometry Ex 5.1

Question 3.
Plot the following points in the coordinate plane and join them. What is your conclusion about the resulting figure?
(i) (-5, 3) (-1, 3) (0, 3) (5, 3)
Solution:
Samacheer Kalvi 9th Maths Guide Chapter 5 Coordinate Geometry Ex 5.1 3
Straight line parallel to x-axis.

Samacheer Kalvi 9th Maths Guide Chapter 5 Coordinate Geometry Ex 5.1

(ii) (0, -4) (0, -2) (0, 4) (0, 5)
Solution:
Samacheer Kalvi 9th Maths Guide Chapter 5 Coordinate Geometry Ex 5.1 4
The line is on the y-axis.

Samacheer Kalvi 9th Maths Guide Chapter 5 Coordinate Geometry Ex 5.1

Question 4.
Plot the following points in the coordinate plane. Join them in order. What type of geometrical shape is formed?
(i) (0, 0) (-4, 0) (-4, -4) (0, -4)
Solution:
Samacheer Kalvi 9th Maths Guide Chapter 5 Coordinate Geometry Ex 5.1 5
The geometrical shape of the figure is square.

Samacheer Kalvi 9th Maths Guide Chapter 5 Coordinate Geometry Ex 5.1

(ii) (-3, 3) (2, 3) (-6, -1) (5, -1)
Solution:
Samacheer Kalvi 9th Maths Guide Chapter 5 Coordinate Geometry Ex 5.1 6
The shape of the geometrical figure is Trapezium.

Samacheer Kalvi 9th Maths Guide Chapter 5 Coordinate Geometry Ex 5.1

Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Unit Exercise 2

Students can download Maths Chapter 2 Relations and Functions Unit Exercise 2 Questions and Answers, Notes, Samacheer Kalvi 10th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 10th Maths Solutions Chapter 2 Numbers and Sequences Unit Exercise 2

Question 1.
Prove that n2 – n divisible by 2 for every positive integer n.
Answer:
We know that any positive integer is of the form 2q or 2q + 1 for some integer q.
Case 1: When n = 2 q
n2 – n = (2q)2 – 2q = 4q2 – 2q
= 2q (2q – 1)
In n2 – n = 2r
2r = 2q(2q – 1)
r = q(2q + 1)
n2 – n is divisible by 2

Case 2: When n = 2q + 1
n2 – n = (2q + 1)2 – (2q + 1)
= 4q2 + 1 + 4q – 2q – 1 = 4q2 + 2q
= 2q (2q + 1)
If n2 – n = 2r
r = q (2q + 1)
∴ n2 – n is divisible by 2 for every positive integer “n”

Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Unit Exercise 2

Question 2.
A milk man has 175 litres of cow’s milk and 105 litres of buffalow’s milk. He wishes to sell the milk by filling the two types of milk in cans of equal capacity. Calculate the following
(i) Capacity of a can
(ii) Number of cans of cow’s milk
(iii) Number of cans of buffalow’s milk.
Answer:
175 litres of cow’s milk.
105 litres of goat’s milk.
H.C.F of 175 & 105 by using Euclid’s division algorithm.
175 = 105 × 1 + 70, the remainder 70 ≠ 0
Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Unit Exercise 2 1
Again using division algorithm,
Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Unit Exercise 2 2
105 = 70 × 1 + 35, the remainder 35 ≠ 0
Again using division algorithm.
70 = 35 × 2 + 0, the remainder is 0.
∴ 35 is the H.C.F of 175 & 105.
(i) ∴ The milk man’s milk can’s capacity is 35 litres.
(ii) No. of cow’s milk obtained = \(\frac { 175 }{ 35 } \) = 5 cans
(iii) No. of buffalow’s milk obtained = \(\frac { 105 }{ 35 } \) = 3 cans

Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Unit Exercise 2

Question 3.
When the positive integers a, b and c are divided by 13 the respective remainders are 9,7 and 10. Find the remainder when a + 2b + 3c is divided by 13.
Answer:
Given the positive integer are a, b and c
a = 13q + 9 (divided by 13 leaves remainder 9)
b = 13q + 7
c = 13q + 10
a + 2b + 3c = 13q + 9 + 2(13q + 7) + 3 (13q + 10)
= 13q + 9 + 26q + 14 + 39q + 30
= 78q + 53
When compare with a = 3q + r
= (13 × 6) q + 53
The remainder is 53

Question 4.
Show that 107 is of the form 4q +3 for any integer q.
Solution:
107 = 4 × 26 + 3. This is of the form a = bq + r.
Hence it is proved.

Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Unit Exercise 2

Question 5.
If (m + 1)th term of an A.P. is twice the (n + 1)th term, then prove that (3m + 1)th term is twice the (m + n + 1)th term.
Answer:
tn = a + (n – 1)d
Given tm+1 = 2 tn+1
a + (m + 1 – 1)d = 2[a + (n + 1 – 1)d]
a + md = 2(a + nd) ⇒ a + md =2a + 2nd
md – 2nd = a
d(m – 2n) = a ….(1)
To Prove t(3m + 1) = 2(tm+n+1)
L.H.S. = t3m+1
= a + (3m + 1 – 1)d
= a + 3md
= d(m – 2n) + 3md (from 1)
= md – 2nd + 3md
= 4md – 2nd
= 2d (2m – n)
R.H.S. = 2(tm+n+1)
= 2 [a + (m + n + 1 – 1) d]
= 2 [a + (m + n)d]
= 2 [d (m – 2n) + md + nd)] (from 1)
= 2 [dm – 2nd + md + nd]
= 2 [2 md – nd]
= 2d (2m – n)
R.H.S = L.H.S
∴ t(3m+1) = 2 t(m+n+1)
Hence it is proved.

Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Unit Exercise 2

Question 6.
Find the 12th term from the last term of the A.P -2, -4, -6,… -100.
Answer:
The given A.P is -2, -4, -6, …. 100
d = -4 – (-2) = -4 + 2 = – 2
Finding the 12 term from the last term
a = -100, d = 2 (taking from the last term)
n = 12
tn = a + (n – 1)d
t12 = – 100 + 11 (2)
= -100 + 22
= -78
∴ The 12th term of the A.P from the last term is – 78

Question 7.
Two A.P’s have the same common difference. The first term of one A.P is 2 and that of the other is 7. Show that the difference between their 10th terms is the same as the difference between their 21st terms, which is the same as the difference between any two corresponding terms.
Solution:
Let the two A.Ps be
AP1 = a1, a1 + d, a1 + 2d,…
AP2 = a2, a2 + d, a2 + 2d,…
In AP1 we have a1 = 2
In AP2 we have a2 = 7
t10 in AP1 = a1 + 9d = 2 + 9d ………….. (1)
t10 in AP2 = a2 + 9d = 7 + 9d …………… (2)
The difference between their 10th terms
= (1) – (2) = 2 + 9d – 7 – 9d
= -5 ………….. (I)
t21 m AP1 = a1 + 20d = 2 + 20d …………. (3)
t21 in AP2 = a2 + 20d = 7 + 20d ………… (4)
The difference between their 21 st terms is
(3) – (4)
= 2 + 20d – 7 – 20d
= -5 ……………. (II)
I = II
Hence it is Proved.

Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Unit Exercise 2

Question 8.
A man saved ₹16500 in ten years. In each year after the first he saved ₹100 more than he did in the preceding year. How much did he save in the first year?
Answer:
Amount of saving in ten years = ₹ 16500
S10 = 16500, d= 100
Sn = \(\frac { n }{ 2 } \) [2a + (n – 1)d]
S10 = \(\frac { 10 }{ 2 } \) [2a + 9d]
16500 = \(\frac { 10 }{ 2 } \) [2a + 900] = 5(2a + 900)
16500 = 10a + 4500 ⇒ 16500 – 4500 = 10a
12000 = 10a
a = \(\frac { 12000 }{ 10 } \) = 1200
Amount saved in the first year = ₹ 1200

Question 9.
Find the G.P. in which the 2nd term is \(\sqrt { 6 }\) and the 6th term is 9 \(\sqrt { 6 }\).
Answer:
2nd term of the G.P = \(\sqrt { 6 }\)
t2 = \(\sqrt { 6 }\)
[tn = a rn-1]
a.r = \(\sqrt { 6 }\) ….(1)
6th term of the G.P. = 9 \(\sqrt { 6 }\)
a. r5 = 9\(\sqrt { 6 }\) ……..(2)
Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Unit Exercise 2 4
Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Unit Exercise 2 5

Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Unit Exercise 2

Question 10.
The value of a motorcycle depreciates at a rate of 15% per year. What will be the value of the motorcycle 3 year hence, which is now purchased for ₹45,000?
Solution:
a = ₹45000
Depreciation = 15% for ₹45000
= 45000 × \(\frac { 15 }{ 100 } \)
d = ₹6750 since it is depreciation
d = -6750
At the end of 1st year its value = ₹45000 – ₹6750
= ₹38250,
Again depreciation = 38250 × \(\frac { 15 }{ 100 } \) = 5737.50
At the end of 2nd year its value
= ₹38250 – ₹5737.50 = 32512.50
Again depreciation = 32512.50 × \(\frac { 15 }{ 100 } \) = 4876.88
At the end of the 3rd year its value
= 32512.50 – 4876.88 = 27635.63
∴ The value of the automobile at the 3rd year
= ₹ 27636

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.5

Students can download Maths Chapter 3 Algebra Ex 3.5 Questions and Answers, Notes, Samacheer Kalvi 9th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 3 Algebra Ex 3.5

Question 1.
Factorise the following expressions:
(i) 2a² + 4a²b + 8a²c
(ii) ab – ac – mb + mc
Solution:
(i) 2a² + 4a²b + 8a²c = 2a²(1 + 2b + 4c)
(ii) ab – ac – mb + mc = a(b – c) – m(b – c)
= (b – c) (a – m)

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.5

Question 2.
Factorise the following expressions:
(i) x² + 4x + 4
(ii) 3a² – 24ab + 48b²
(iii) x5 – 16x
(iv) m2 + \(\frac{1}{m^2}\) – 23
(v) 6 – 216x2
(vi) a2 + \(\frac{1}{a^2}\) – 18
Solution:
(i) x2 + 4x + 4 = x2 + 2 × x × 2 + 22 [a2 + 2ab+ b2 = (a + b)2]
= (x + 2)2

(ii) 3a2 – 24ab + 48b2 = 3[a2 – 8ab + 16b2]
= 3[a2 – 2 × a × 4b + (4b)2]
= 3(a- 4b)2 [a2 – 2ab + b2 = (a – b)2]

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.5

(iii) x5 – 16x = x[x4 – 16] [a2 – b2 = (a + b) (a – b)]
= x[(x2)2 – 42]
= x(x2 + 4) (x2 – 4)
= x(x2 + 4) (x2 – 22)
= x(x2+ 4) (x + 2) (x – 2)

(iv) m2 + \(\frac{1}{m^2}\) – 23 = [Add + 2 and – 2 to make -23 as -25]
= m2 + \(\frac{1}{m^2}\) + 2 – 2 – 23 = m2 + \(\frac{1}{m^2}\) + 2 – 25
= m2 + \(\frac{1}{m^2}\) + 2 × m × \(\frac{1}{m}\) – 52
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.5 1

(v) 6 – 216x2 = 6[1 – 36x2]
= 6[1 – (6x)2] [a2 – b2 = (a + b)(a – b)]
= 6(1 + 6x) (1 – 6x)

(vi) a2 + \(\frac{1}{a^2}\) – 18 = a2 + \(\frac{1}{a^2}\) – 2 + 2 – 18
(add -2 and +2 to make 18 as 16)
= a2 + \(\frac{1}{a^2}\) – 2 × a × \(\frac{1}{a}\) – 16 [a2 + b2 – 2ab = (a-b)(a- b)2]
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.5 2

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.5

Question 3.
Factorise the following expressions:
(i) 4x2 + 9y2 + 25z2 + 12xy + 30yz + 20xz
Solution:
[a2 + b2 + c2 + 2ab + 2bc + 2ac = (a + b + c)2]
= (2x)2 + (3y)2 + (5z)2 + 2(2x) (3y) + 2(3y) (5z) + 2(5z) (2x)
= (2x + 3y + 5z)2

(ii) 25x2 + 4y2 + 9z2 – 20xy + 12yz – 30xz
Solution:
= (5x)2 + (2y)2 + (3z)2 + 2(5x) (-2y) + 2(-2y) (- 3z) + 2(-3z) (5x)
= (5x – 2y – 3z)2

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.5

Question 4.
Factorise the following expressions:
(i) 8x3 + 125y3
(ii) 27x3 – 8y3
(iii) a6 – 64
Solution:
(i) 8x3 + 125y3 = (2x)3 + (5y)3 [a3 + b3 = (a + b)(a2 – ab + b2)
= (2x + 5y) [(2x)2 – (2x) (5y) + (5y)2]
= (2x + 5y) (4x2 – 10xy + 25y2)

(ii) 27x3 – 8y3 = (3x)3 – (2y)3 [a3 – b3 = (a – b)(a2 + ab + b2)]
= (3x – 2y) [(3x)2 + (3x) (2y) + (2y)2]
= (3x – 2y) (9x2 + 6xy + Ay2)

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.5

(iii) a6 – 64 = a6 – 26
= (a2)3 – (22)3 [a2 – b3 = (a- b) + (a2 + ab + b2)]
= (a2 – 22) [(a2)2 + (a2) (22) + (22)2]
= (a + 2) (a – 2) (a4 + 4a2 + 16)
= (a + 2) (a – 2) [(a2)2 + 42 + 8a2 – 4a2]
= (a + 2)(a- 2) [(a2 + 4)2 – (2a)2] {a2 – b2 = (a + b) (a – b)}
= (a + 2) (a – 2) [(a2 + 4 + 2a) (a2 + 4 – 2a)
= (a + 2) (a – 2) (a2 + 2a + 4) (a2 – 2a + 4)

Question 5.
Factorize the following
(i) x3 + 8y3 + 6xy – 1
(ii) l3 – 8m3 – 27n3 – 18lmn
Using the formula [a3 + b3 + c3 – 3abc] = (a + b + c) (a2 + b2 + c2 – ab – bc – ac)
Solution:
(i) x3 + 8y2 + 6xy – 1 = -(-x3 – 8y3 – 6xy + 1)
= – (-x3 – 8y3 + 1 – 6xy)
= -[(-x)3 + (-2y)3 + 1 – 3(x) (2y) (1)]
= -[-x – 2y + 1] [(-x)2 + (-2y)2 + 12 – (-x) (-2y) – (-2y) (1) – (1) (-x)]
= (x + 2y – 1)(x2 + 4y2 + 1 – 2xy + 2y + x)

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.5

(ii) l3 – 8m3 – 27n3 – 18lmn
= l3 + (-2m)3 + (-3n)2 – 3(l) (-2m) (-3n)
= (l – 2m – 3n) [l2 + (-2m)2 + (-3n)2 -1 (-2m)] – (-2m)(-3n) – (-3n)(l)
= (l – 2m – 3n) (l2 + 4m2 + 9n2 + 2lm – 6mn + 3ln)

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7

Students can download Maths Chapter 3 Algebra Ex 3.7 Questions and Answers, Notes, Samacheer Kalvi 9th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 3 Algebra Ex 3.7

Question 1.
Find the quotient and remainder of the following.
(i) 4x3 + 6x2 – 23x + 18) ÷ (x + 3)
Solution:
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7 1
∴ The quotient = 4x2 – 6x – 5
The remainder = 33

(ii) (8y3 – 16y2 + 16y – 15) ÷ (2y – 1)
Solution:
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7 2
∴ The quotient = 4y2 – 6y + 5
The remainder = -10

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7

(iii) (8x3 – 1) ÷ (2x – 1)
Solution:
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7 3
∴ The quotient = 4x2 + 2x + 1
The remainder = 0

(iv) (-18z + 14z2 + 24z3 + 18) ÷ (3z + 4)
Solution:
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7 4
∴The quotient = 8z2 – 6z + 2
The remainder = 10

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7

Question 2.
The area of a rectangle is x2 + 7x + 12. If its breadth is (x + 3) then find its length.
Solution:
Let the length of the rectangle be “l”
The breadth of the rectangle = x + 3
Area of the rectangle = length × breadth
x2 + 7x + 12 = l(x + 3)
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7 5
Length of the rectangle = x + 4
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7 6

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7

Question 3.
The base of a parallelogram is (5x + 4). Find its height if the area is 25x2 – 16.
Solution:
Let the height of the parallelogram be “h”.
Base of the parallelogram = 5x + 4
Area of a parallelogram = 25x2 – 16
∴ Base x Height = 25x2 – 16
(5x + 4) × h = 25x2– 16
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7 7
Height of the parallelogram = 5x – 4
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7 8

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7

Question 4.
The sum of (x + 5) observations is (x3 + 125). Find the mean of the observations.
Solution:
Sum of the observation = x3 + 125
Number of observation = x + 5
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7 9
Mean = x2 – 5x + 25
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7 10

Question 5.
Find the quotient and remainder for the following using synthetic division:
(i) (x3 + x2 – 7x – 3) ÷ (x – 3)
Solution:
p(x) = x3 + x2 – 7x – 3
d(x) = x – 3 [p(x) = d(x) × q(x) + r]
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7 11
x – 3 = 0
x = 3
Hence the quotient = x2 + 4x + 5
Remainder = 12

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7

(ii) (x3 + 2x2 – x – 4) ÷ (x + 2)
Solution:
p(x) = x3 + 2x2 -x – 4
d(x) = x + 2
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7 12
x + 2 = 0
x = -2
The quotient = x2 – 1
Remainder = -2

(iii) (3x3 – 2x2 + 7x – 5) ÷ (x + 3)
Solution:
p(x) = 3x3 – 2x2 + 7x – 5
d(x) = x + 3
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7 13
x + 3 = 0
x = -3
The quotient = 3x2 – 11x + 40
Remainder = -125

(iv) (8x4 – 2x2 + 6x + 5) ÷ (4x + 1)
Solution:
p(x) = 8x4 – 2x2 + 6x + 5
d(x) = 4x + 1
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7 14

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7

Question 6.
If the quotient obtained on dividing (8x4 – 2x2 + 6x – 7) by (2x + 1) is (4x3 + px2 -qx + 3), then find p, q and also the remainder.
Solution:
p(x) = 8x4 – 2x2 + 6x – 7
d(x) = 2x + 1
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7 15
2x + 1 = 0
2x = -1
x = –\(\frac{1}{2}\)
The quotient = \(\frac{1}{2}\) [8x3 – 4x2 + 6]
= 4x3 – 2x2 + 3
= 4x3 – 2x2 + 0x + 3
The given quotient is = 4x3 + px2 – qx + 3
(compared with the given quotient)
The value of p = -2 and q = 0
Remainder = -10

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7

Question 7.
If the quotient obtained on dividing 3x3 + 11x2 + 34x + 106 by x – 3 is 3x2 + ax + b, then find a, b and also the remainder.
Solution:
p(x) = 3x3 + 11x2 + 34x + 106
d(x) = x – 3
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.7 16
x – 3 = 0
x = 3
The quotient is = 3x2 + 20x + 94
The given quotient is = 3x2 + ax + b
Compared with the given quotient
The value of a = 20 and b = 94
The remainder = 388

Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Ex 2.10

Students can download Maths Chapter 2 Numbers and Sequences Ex 2.10 Questions and Answers, Notes, Samacheer Kalvi 10th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 10th Maths Solutions Chapter 2 Numbers and Sequences Ex 2.10

Multiple choice questions:

Question 1.
Euclid’s division lemma states that for positive integers a and b, there exist unique integers q and r such that a = bq + r, where r must satisfy ………………….
(1) 1 < r < b
(2) 0 < r < b
(3) 0 < r < 6
(4) 0 < r < b
Ans.
(3) 0 < r < b

Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Ex 2.10

Question 2.
Using Euclid’s division lemma, if the cube of any positive integer is divided by 9 then the possible remainders are ………………….
(1) 0, 1, 8
(2) 1, 4, 8
(3) 0, 1, 3
(4) 1, 3, 5
Answer:
(1) 0, 1, 8
Hint: Let the +ve integer be 1, 2, 3, 4 …………
13 = 1 when it is divided by 9 the remainder is 1.
23 = 8 when it is divided by 9 the remainder is 8.
33 = 27 when it is divided by 9 the remainder is 0.
43 = 64 when it is divided by 9 the remainder is 1.
53 = 125 when it is divided by 9 the remainder is 8.
The remainder 0, 1, 8 is repeated.

Question 3.
If the H.C.F of 65 and 117 is expressible in the form of 65m – 117 , then the value of m is
(1) 4
(2) 2
(3) 1
(4) 3
Answer:
(2) 2
Hint:
H.C.F. of 65 and 117
117 = 65 × 1 + 52
65 = 52 × 1 + 13
52 = 13 × 4 + 0
∴ 13 is the H.C.F. of 65 and 117.
65m – 117 = 65 × 2 – 117
130 – 117 = 13
∴ m = 2

Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Ex 2.10

Question 4.
The sum of the exponents of the prime factors in the prime factorization of 1729 is …………………….
(1) 1
(2) 2
(3) 3
(4) 4
Answer:
(3) 3
Hint: 1729 = 7 × 13 × 19
Sum of the exponents = 1 + 1 + 1
= 3

Question 5.
The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is
(1) 2025
(2) 5220
(3) 5025
(4) 2520
Answer:
(4) 2520
Hint:
Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Ex 2.10 1
L.C.M. = 23 × 32 × 5 × 7
= 8 × 9 × 5 × 7
= 2520

Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Ex 2.10

Question 6.
74k ≡ ______ (mod 100)
(1) 1
(2) 2
(3) 3
(4) 4
Answer:
(1) 1
Hint:
74k ≡______ (mod 100)
y4k ≡ y4 × 1 = 1 (mod 100)

Question 7.
Given F1 = 1 , F2 = 3 and Fn = Fn-1 + Fn-2 then F5 is ………….
(1) 3
(2) 5
(3) 8
(4) 11
Answer:
(4) 11
Hint:
Fn = Fn-1 + Fn-2
F3 = F2 + F1 = 3 + 1 = 4
F4 = F3 + F2 = 4 + 3 = 7
F5 = F4 + F3 = 7 + 4 = 11

Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Ex 2.10

Question 8.
The first term of an arithmetic progression is unity and the common difference is 4. Which of the following will be a term of this A.P
(1) 4551
(2) 10091
(3) 7881
(4) 13531
Answer:
(3) 7881
Hint:
t1 = 1
d = 4
tn = a + (n – 1)d
= 1 + 4n – 4
4n – 3 = 4551
4n = 4554
n = will be a fraction
It is not possible.
4n – 3 = 10091
4n = 10091 + 3 = 10094
n = a fraction
4n – 3 = 7881
4n = 7881 + 3 = 7884
n = \(\frac{7884}{4}\), n is a whole number.
4n – 3 = 13531
4n = 13531 – 3 = 13534
n is a fraction.
∴ 7881 will be 1971st term of A.P.

Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Ex 2.10

Question 9.
If 6 times of 6th term of an A.P is equal to 7 times the 7th term, then the 13th term of the A.P. is ………..
(1) 0
(2) 6
(3) 7
(4) 13
Answer:
(1) 0
Hint:
6 t6 = 7 t7
6(a + 5d) = 7 (a + 6d) ⇒ 6a + 30d = 7a + 42d
30 d – 42 d = 7a – 6a ⇒ -12d = a
t13 = a + 12d (12d = -a)
= a – a = 0

Question 10.
An A.P consists of 31 terms. If its 16th term is m, then the sum of all the terms of this A.P. is
(1) 16 m
(2) 62 m
(3) 31 m
(4) \(\frac { 31 }{ 2 } \) m
Answer:
(3) 31 m
Hint:
t16 = m
S31 = \(\frac { 31 }{ 2 } \) (2a + 30d)
= \(\frac { 31 }{ 2 } \) (2(a + 15d))
(∵ t16 = a + 15d)
= 31(t16) = 31m

Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Ex 2.10

Question 11.
In an A.P., the first term is 1 and the common difference is 4. How many terms of the A.P must be taken for their sum to be equal to 120?
(1) 6
(2) 7
(3) 8
(4) 9
Answer:
(3) 8
Here a = 1, d = 4, Sn = 120
Sn = \(\frac { n }{ 2 } \)[2a + (n – 1)d]
120 = \(\frac { n }{ 2 } \) [2 + (n – 1)4] = \(\frac { n }{ 2 } \) [2 + 4n – 4)]
= \(\frac { n }{ 2 } \) [4n – 2)] = \(\frac { n }{ 2 } \) × 2 (2n – 1)
120 = 2n2 – n
∴ 2n2 – n – 120 = 0 ⇒ 2n2 – 16n + 15n – 120 = 0
2n(n – 8) + 15 (n – 8) = 0 ⇒ (n – 8) (2n + 15) = 0
n = 8 or n = \(\frac { -15 }{ 2 } \) (omitted)
∴ n = 8

Question 12.
A = 265 and B = 264 + 263 + 262 …. + 20 which of the following is true?
(1) B is 264 more than A
(2) A and B are equal
(3) B is larger than A by 1
(4) A is larger than B by 1
Answer:
(4) A is larger than B by
A = 265
B = 264+63 + 262 + …….. + 20
= 2
= 1 + 22 + 22 + ……. + 264
a = 1, r = 2, n = 65 it is in G.P.
S65 = 1 (265 – 1) = 265 – 1
A = 265 is larger than B

Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Ex 2.10

Question 13.
The next term of the sequence \(\frac { 3 }{ 16 } \),\(\frac { 1 }{ 8 } \),\(\frac { 1 }{ 12 } \),\(\frac { 1 }{ 18 } \) is ………..
(1) \(\frac { 1 }{ 24 } \)
(2) \(\frac { 1 }{ 27 } \)
(3) \(\frac { 2 }{ 3 } \)
(4) \(\frac { 1 }{ 81 } \)
Answer:
(2) \(\frac { 1 }{ 27 } \)
Hint:
\(\frac { 3 }{ 16 } \),\(\frac { 1 }{ 8 } \),\(\frac { 1 }{ 12 } \),\(\frac { 1 }{ 18 } \)
a = \(\frac { 3 }{ 16 } \), r = \(\frac { 1 }{ 8 } \) ÷ \(\frac { 3 }{ 16 } \) = \(\frac { 1 }{ 8 } \) × \(\frac { 16 }{ 3 } \) = \(\frac { 2 }{ 3 } \)
The next term is = \(\frac { 1 }{ 18 } \) × \(\frac { 2 }{ 3 } \) = \(\frac { 1 }{ 27 } \)

Question 14.
If the sequence t1,t2,t3 … are in A.P. then the sequence t6,t12,t18 … is
(1) a Geometric Progression
(2) an Arithmetic Progression
(3) neither an Arithmetic Progression nor a Geometric Progression
(4) a constant sequence
Answer:
(2) an Arithmetic Progression
Hint:
If t1, t2, t3, … is 1, 2, 3, …
If t6 = 6, t12 = 12, t18 = 18 then 6, 12, 18 … is an arithmetic progression

Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Ex 2.10

Question 15.
The value of (13 + 23 + 33 + ……. + 153) – (1 + 2 + 3 + …….. + 15) is …………….
(1) 14400
(2) 14200
(3) 14280
(4) 14520
Answer:
(3) 14280
Hint:
Samacheer Kalvi 10th Maths Guide Chapter 2 Numbers and Sequences Ex 2.10 2
1202 – 120 = 120(120 – 1)
120 × 119 = 14280

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.3

Students can download Maths Chapter 3 Algebra Ex 3.3 Questions and Answers, Notes, Samacheer Kalvi 9th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 3 Algebra Ex 3.3

Question 1.
Check whether p(x) is a multiple of g(x) or not.
(i) p(x) = x3 – 5x2 + 4x – 3; g(x) = x – 2
Solution:
p(x) = x3 – 5x2 + 4x – 3
P(2) = (2)3 – 5(2)2 + 4(2) – 3
= 8 – 5(4) + 8 – 3
= 8 – 20 + 8 – 3
= 16 – 23
= -7
p{2) ≠ 0
∴ p(x) is not a multiple of g(x)

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.3

Question 2.
By remainder theorem, find the remainder when p(x) is divided by g(x) where,
(i) p(x) = x3 – 2x2 – 4x – 1; g(x) = x + 1
Solution:
p(x) = x3 – 2x2 – 4x – 1
p(-1) = (-1)3 – 2(-1)2 – 4(-1) – 1
= 1 – 2 + 4 – 1
= 4 – 4 = 0
∴ The remainder = 0

(ii) p(x) = 4x3 – 12x2 + 14x – 3; g(x) = 2x – 1
Solution:
p(x) = 4x3 – 12x2 + 14x – 3
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.3 1
= 4 × \(\frac{1}{8}\) – 12 × \(\frac{1}{4}\) + 14 × \(\frac{1}{2}\) – 3
= \(\frac{1}{2}\) – 3 + 7 – 3
= \(\frac{1}{2}\) – 6 + 7
= \(\frac{1}{2}\) + 1
= \(\frac{3}{2}\)
∴ The reminder is \(\frac{3}{2}\)

(iii) p(x) = x3 – 3x2 + 4x + 50; g(x) = x – 3
Solution:
p(x) = x3 – 3x2 + 4x + 50
p(3) = 33 – 3(3)2 + 4(3) + 50
= 27 – 27 + 12 + 50
= 62
The remainder is 62.

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.3

Question 3.
Find the remainder when 3x3 – 4x2 + 7x – 5 is divided by (x + 3)
Solution:
p(x) = 3x3 – 4x2 + 7x – 5
When it is divided by x +3,
p(-3) = 3(-3)3 – 4(-3)2 + 7(-3) – 5
= 3(-27) – 4(9) – 21 – 5
= -81 – 36 – 21 – 5
= -143
The remainder is -143.

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.3

Question 4.
What is the remainder when x2018 + 2018 is divided by x – 1.
Solution:
p(x) = x2018 + 2018
When it is divided by x – 1,
p(1) = 12018 + 2018
= 1 + 2018
= 2019
The remainder is 2019.

Question 5.
For what value of k is the polynomial
p(x) = 2x3 – kx2 + 3x + 10 exactly divisible by x – 2
Solution:
p(x) = 2x3 – kx2 + 3x + 10
When it is exactly divided by x – 2,
P(2) = 0
2(2)3 – k(2)2 + 3(2) + 10 = 0
2(8) – k(4) + 6 + 10 = 0
16 – k(4) + 6 + 10 = 0
16 – 4k + 6 + 10 = 0
32 – 4k = 0
32 = 4k
∴ k = \(\frac{32}{4}\)
= 8
The value of k = 8

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.3

Question 6.
If two polynomials 2x3 + ax2 + 4x – 12 and x3 + x2 – 2x + a leave the same remainder when divided by (x – 3), find the value of a and also find the remainder.
Solution:
p(x1) = 2x3 + ax2 + 4x – 12
When it is divided by x – 3,
p(3) = 2(3)3 + a(3)2 + 4(3) – 12
= 54 + 9a + 12 – 12
= 54 + 9a ……….(R1)
p(x2) = x3 + x2 – 2x + a
When it is divided by x – 3,
p(3) = 33 + 32 – 2(3) + a
= 27 + 9 – 6 + a
= 30 + a ………(R2)
The given remainders are same (R1 = R2)
∴ 54 + 9a = 30 + a
9a – a = 30 – 54
8a = -24
∴ a = -24/8
= -3
Consider R2,
Remainder = 30 – 3
= 27

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.3

Question 7.
Determine whether (x – 1) is a factor of the following polynomials:
(i) x3 + 5x2 – 10x + 4
Solution:
p(x) = x3 + 5x2 – 10x + 4
p(1) = 13 + 5(1) – 10(1) + 4
= 1 + 5 – 10 + 4
= 10 – 10
= 0
∴ x – 1 is a factor of p(x)

(ii) x4 + 5x2 – 5x + 1
Solution:
p(1) = 14 + 5(1)2 – 5(1) + 1
= 1 + 5 – 5 + 1
= 7 – 5
= 2
= 0
∴ x – 1 is not a factor of p(x)

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.3

Question 8.
Using factor theorem, show that (x – 5) is a factor of the polynomial
2x3 – 5x2 – 28x + 15
Solution:
p(x) = 2x3 – 5x2 – 28x + 15
x – 5 is a factor
p(5) = 2(5)3 – 5(5)2 – 28(5) + 15
= 250 – 125 – 140 + 15
= 265 – 265
= 0
∴ x – 5 is a factor of p(x)

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.3

Question 9.
Determine the value of m, if (x + 3) is a factor of x3 – 3x2 – mx + 24.
Solution:
p(x) = x3 – 3x2 – mx + 24
when x + 3 is a factor
P(-3) = 0
(-3)3 – 3(-3)2 – m(-3) + 24 = 0
-27 – 27 + 3m + 24 = 0
-54 + 24 + 3m = 0
-30 + 3m = 0
3m = 30
m = \(\frac{30}{3}\)
= 10
The value of m = 10

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.3

Question 10.
If both (x-2) and (x – \(\frac{1}{2}\)) are the factors of ax2 + 5x + b, then show that a = b.
Solution:
p(x) = ax2 + 5x + b
when (x-2) is a factor
P(2) = 0
a(2)2 + 5(2) + b = 0
4a + 10 + b = 0
4a + b = -10 …….(1)
when (x – \(\frac{1}{2}\)) is a factor
p(\(\frac{1}{2}\)) = 0
a\((\frac{1}{2})^2\) + 5(\(\frac{1}{2}\)) + b = 0
Multiply by 4
a + 10 + 4b = 0
a + 46 = -10 …….(2)
From (1) and (2) we get
4a + b = a + 4b
4a – a = 4b – b
3a = 3b
a = b
Hence it is proved.

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.3

Question 11.
If (x – 1) divides the polynomial kx3 – 2x2 + 25x – 26 without remainder, then find the value of k.
Solution:
p(x) = kx3 – 2x2 + 25x – 26
When it is divided by x – 1
P(1) = 0
k(1)3 – 2(1)2 + 25(1) – 26 = 0
k – 2 + 25 – 26 = 0
k + 25 – 28 = 0
k – 3 = 0
k = 3
The value of k = 3

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.3

Question 12.
Check if (x + 2) and (x – 4) are the sides of a rectangle whose area is x2 – 2x – 8 by using factor theorem.
Solution:
Let the area of a rectangle be p(x)
p(x) = x2 – 2x – 8
When x + 2 is the side of the rectangle
p(-2) = (-2)2 – 2(-2) – 8
= 4 + 4 – 8
= 8 – 8
= 0
When x – 4 is the side of the rectangle.
P(4) = (4)2 – 2(4) – 8
= 16 – 8 – 8
= 16 – 16
= 0
(x + 2) and (x – 4) are the sides of a rectangle

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6

Students can download Maths Chapter 3 Algebra Ex 3.6 Questions and Answers, Notes, Samacheer Kalvi 9th Maths Guide Pdf helps you to revise the complete Tamilnadu State Board New Syllabus, helps students complete homework assignments and to score high marks in board exams.

Tamilnadu Samacheer Kalvi 9th Maths Solutions Chapter 3 Algebra Ex 3.6

Question 1.
Factorise the following.
(i) x² + 10x + 24
Solution:
Product = 24, sum = 10
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6 1
Split the middle term as 6x and 4x
x² + 10x + 24 = x² + 6x + 4x + 24
= x(x + 6) + 4 (x + 6)
= (x + 6) (x + 4)

(ii) z² + 4z – 12
Solution:
Product = -12, sum = 4
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6 2
Split the middle term as 6z and -2z
z² + 4z – 12 = z² + 6z – 2z – 12
= z(z + 6) – 2 (z + 6)
= (z + 6) (z – 2)

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6

(iii) p² – 6p – 16
Solution:
Product = -16, sum = -6
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6 3
Split the middle term as – 8p and 2p
p² – 6p – 16 = p² – 8p + 2p – 16
= p(p – 8) + 2 (p – 8)
= (p – 8) (p + 2)

(iv) t² + 72 – 17t
Solution:
Product = +72, sum = -17
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6 4
Split the middle term as -9t and -8t
t² – 17t + 72 = t² – 91 – 8t + 72
= t(t – 9) – 8 (l – 9)
= (t – 9) (t – 8)

(v) y² – 16y – 80
Solution:
Product = -80, sum = -16
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6 5
Split the middle term as -20y and 4y
y² – 16y – 80 = y² – 20y + Ay – 80
= y(y – 20) + 4 (y – 20)
= (y – 20) (y + 4)

(vi) a² + 10a – 600
Solution:
Product = -600, sum =10
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6 6
Split the middle term as 30a and -20a
a² + 10a – 600 = a² + 30a – 20a – 600
= a(a + 30) – 20 (a + 30)
= (a + 30) (a – 20)

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6

Question 2.
Factorise the following.
(i) 2a² + 9a + 10
Solution:
Product = 2 × 10 = 20, sum = 9
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6 7
Split the middle term as 5a and 4a
2a² + 9a + 10 = 2a² + 5a + 4a + 10
= a(2a + 5) + 2 (2a + 5)
= (2a+ 5) (a+ 2)

(ii) 5x² – 29xy – 42y²
Solution:
Product = 5 × -42 = -210, sum = -29
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6 8
Split the middle term as -35x and 6x
5x² – 29xy – 42y² = 5x² – 35xy + 6xy – 42y²
= 5x (x – 7y) + 6y (x – 7y)
= (x – 7y) (5x + 6y)

(iii) 9 – 18x + 8x²
Solution:
Product = 9 × 8 = 72, sum = -18
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6 9
Split the middle term as -12x and -6x
9 – 18x + 8x² = 8x² – 18x + 9
= 8x² – 12x – 6x + 9
= 4x (2x – 3) – 3 (2x – 3)
= (2x – 3) (4x – 3)

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6

(iv) 6x² + 16xy + 8y²
Solution:
Product = 6 × 8 = 48, sum = 16
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6 10
Split the middle term as 4xy and 12xy
6x² + 16xy + 8y² = 6x² + 12xy + 4xy + 8y²
= 6x (x + 2y) + 4y(x + 2y)
= (x + 2y) (6x + 4y)
= 2(x + 2y) (3x + 2y)

(v) 12x² + 36x²y + 27y²x²
Solution:
3x²2 [4 + 12y + 9y²]
= 3x² [9y² + 12y + 4]
Product = 9 x 4 = 36, sum =12
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6 11
Split the middle term as 6y and 6y
12x² + 36x²y + 21y²x² = 3x² [9y² + 12y + 4]
= 3x² [9y² + 6y + 6y + 4]
= 3x² [3y(3y + 2) + 2(3y + 2)]
= 3x² (3y + 2) (3y + 2)
= 3x² (3y + 2)2

(vi) (a + b)² + 9 (a + b) + 18
Solution:
Let (a + b) = x
x² + 9x + 18
Product =18, sum = 9
Split the middle term as 6x and 3x
x² + 9x + 18 = x² + 6x + 3x + 18
= x (x + 6) + 3 (x + 6)
= (x + 6) (x + 3)
But x = a + b
(a + b)² + 9(a + b) + 18 = (a + b + 6) (a + b + 3)

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6

Question 3.
Factorise the following.
(i) (p – q)² – 6(p – q) – 16
Solution:
Let (p – q) = x
(p – q)² – 6 (p – q) – 16 = x² – 6x – 16
Product = -16, sum = -6
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6 12
Split the middle term as -8x and 2x
x² – 6x – 16 = x² – 8x + 2x – 16
= x(x – 8) + 2(x – 8)
= (x – 8) (x + 2)
(But x = p – q)
= (p – q – 8) (p – q + 2)

(ii) m² + 2mn – 24n²
Solution:
Product = -24, sum = 2
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6 13
Split the middle term as 6mn and -4mn
m² + 2mn – 24m² = m² + 6mn – 4mn – 24n²
= m(m + 6n) – 4n (m + 6n)
= (m + 6n) (m – 4n)

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6

(iii) √5 a² + 2a – 3√5?
Solution:
Product = √5 × – 3√5 = -15, sum = 2
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6 14
Split the middle term as 5x and -3x
√5 a² + 2a – 3√5 = √5a² + 5a – 3a – 3√5
= √5 a(a + √5) – 3(a + √5)
= (a + √5) (√5a – 3)

(iv) a4 – 3a² + 2
Solution:
Let a² = x
a4 – 3a² + 2 = (a²)² – 3a² + 2
= x² – 3x + 2
Product = 2 and sum = -3
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6 15
Split the middle term as -x and -2x
x² – 3x + 2 = x² – x – 2x + 2
= x(x – 1) – 2(x – 1)
= (x – 1) (x – 2)
a4 – 3a² + 2 = (a2 – 1)(a2 – 2) [But a2 = x]
= (a + 1) (a – 1) (a2 – 2)

Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6

(v) 8m3 – 2m2n – 15mn2
Solution:
8m3 – 2m2n – 15mn2 = m(8m2 – 2mn – 15n2)
Product = 8(-15) = -120 and sum = -2
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6 16
Split the middle term as -12mn and 10mn
8m3 – 2m2n – 15mn2 = m[8m2 – 2mn – 15n2]
= m[8m2– 12mn + 10mn- 15n2]
= m[4m (2m – 3n) + 5n(2m – 3n)]
= m(2m – 3n) (4m + 5n)

(vi) \(\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{2}{x y}\)
Solution:
Samacheer Kalvi 9th Maths Guide Chapter 3 Algebra Ex 3.6 17